首页> 外文学位 >Improving Ab-Initio Simulations of Ordering Phenomena in Transition Metal Alloys
【24h】

Improving Ab-Initio Simulations of Ordering Phenomena in Transition Metal Alloys

机译:过渡金属合金中有序现象从头算的改进模拟

获取原文
获取原文并翻译 | 示例

摘要

Density functional theory (DFT) is undergoing a shift from a descriptive to a predictive tool in the field of solid state physics, with undertakings like the Materials Project, OQMD, and AFLOW leading the way in utilizing high-throughput data to predict and seek novel materials properties. However, methods to rigorously evaluate the validity and accuracy of these studies is lacking in both the availability and utilization of techniques. The natural disconnect between simulated and experimental length-scales and temperatures, combined with this lack of validation, raises serious questions when simulation and experiment disagree. In this thesis, we analyze several transition metal systems where simulations and experiments present unusual disagreements, and develop a new formalism for comparing high-temperature measurements to ab-initio calculations. Our work aims to broaden the understanding not only of the specific systems discussed, but of how presently available ab-initio methods perform for transition metal alloys across all systems.;Recent high-throughput ab-initio studies of transition metal binaries have suggested a great number of undiscovered stable phases present in well-studied systems. Co-Pt alloys, especially, have a long experimental history demonstrating three stable mixed phases: L10 CoPt and L12 Co 3Pt and CoPt3, but density functional theory suggests a set of yet-unobserved long-period beta2-like superstructures at Pt-rich compositions. We analyze the Co-Pt system in-depth, calculating the energy of over 1,400 structures to thoroughly explore the series of unusual superstructures suggested by DFT. Simulated diffraction patterns, analysis of magnetic behavior, and investigation of the density-of-states emphasize the stark differences between measured behaviors and ab-initio predictions. By moving up the Jacob's Ladder of functionals, we show that we only replace one set of discrepancies for another, and even the introduction of vibrational degrees of freedom fails to solve the massive differences in predicted phase stability. By fitting the ab-initio results to a cluster expansion Hamiltonian and performing Monte Carlo calculations, we show that the resulting high-temperature phase diagram is wholly incompatible with experimental results.;Like Co-Pt, Heusler compounds have unique magnetic properties, resulting in interest for their potential applications as spintronic materials. The pseudo-binary (Mn,Fe)Ru2Sn, formed as a solid solution of the full Heuslers (Mn, Fe)Ru2Sn, has been recently shown to exhibit exchange-hardening implicative of two magnetic phases, despite the presence of only one chemical phase. Using ab-initio calculations we show that the magnetic behavior of this alloy arises from a competition between AFM-favoring Sn-mediated superexchange and FM-favoring RKKY exchange mediated by spin-polarized conduction electrons. Changes in valency upon replacement of Mn with Fe shifts the balance from superexchange-dominated interactions to RKKY-dominated interactions. Using our electronic structure calculations, we parameterize a mixed-basis chemical-and-magnetic cluster expansion, and use Monte Carlo simulations to demonstrate a ferromagnetic (FM) to antiferromagnetic (AFM) behavior dependent on composition with the experimental study. By examining the low-temperature ensemble averages of magnetic and chemical correlations, we identify the mechanism behind magnetic hardening in the solid solution.;Our multiple successes in utilizing cluster expansions, both to deeply analyze failures and successfully describe complex chemical-magnetic interactions, motivates an experiments-driven approach to lattice Hamiltonians. For alloys, cluster expansion Hamiltonians reduce the complex, many-body electron problem of density functional theory to a series of simple site-wise basis functions (e.g., products of site occupancy variables) on an atomic scale. The resulting energy polynomial is computationally inexpensive, and hence suitable for the (tens of) thousands of calculations of large systems required by stochastic methods. We present a new method to run the statistical mechanics problem "in reverse", using high-temperature observations and thermodynamic connections to construct an effective Hamiltonian and thereby predict the 0 Kelvin energy spectrum and associated ground states. By re-examining the cluster expansion coefficients as thermodynamic state variables and utilizing entropy-maximization approaches, we develop an algorithm to select clusters and determine cluster interactions using only a few, hightemperature experiments on disordered phases. We demonstrate that our approach can recover not only the stable ground states at 0 Kelvin, but also the full phase behavior for three realistic two-dimensional and three-dimensional alloy test-cases.
机译:密度泛函理论(DFT)正在从固态物理学的描述性工具转变为预测性工具,例如Material Project,OQMD和AFLOW等项目引领了利用高通量数据预测和寻找新方法的道路。材料特性。但是,在技术的可用性和利用性方面都缺乏严格评估这些研究的有效性和准确性的方法。当模拟和实验不同意时,模拟和实验的长度标度与温度之间的自然联系以及缺乏验证的问题引起了严重的问题。在本文中,我们分析了几种过渡金属系统,在这些系统中,模拟和实验均出现了不同寻常的分歧,并开发了一种新的形式主义,用于将高温测量结果与从头算计算进行比较。我们的工作旨在扩大对不仅讨论的特定系统的理解,而且还拓宽对所有系统中过渡金属合金的现有ab-initio方法的性能的了解;最近对过渡金属二元的高通量ab-initio研究表明经过充分研究的系统中存在的未发现的稳定相的数量。尤其是Co-Pt合金,其悠久的实验历史证明了三个稳定的混合相:L10 CoPt和L12 Co 3Pt和CoPt3,但是密度泛函理论表明,在富Pt组成下,一组尚未观察到的长周期β2类超结构。我们对Co-Pt系统进行了深入分析,计算了1,400多个结构的能量,以彻底探索DFT建议的一系列不寻常的上部结构。模拟的衍射图样,磁行为分析和状态密度研究都强调了所测量的行为与从头算之间的明显差异。通过提高功能的雅各布阶梯,我们证明我们仅用一组差异替代了另一组差异,甚至引入振动自由度也无法解决预测相位稳定性的巨大差异。通过将ab-initio结果拟合到簇扩展哈密顿量并进行蒙特卡洛计算,我们证明了所得的高温相图与实验结果完全不兼容。像Co-Pt一样,Heusler化合物具有独特的磁性,因此对其作为自旋电子材料的潜在应用感兴趣。作为全Heuslers(Mn,Fe)Ru2Sn的固溶体形成的伪二元(Mn,Fe)Ru2Sn最近已显示出展现出两个磁性相的交换硬化含义,尽管仅存在一个化学相。使用从头算的方法,我们表明该合金的磁性能来自于自旋极化传导电子介导的AFM有利于Sn介导的超交换与FM有利于RKKY交换之间的竞争。在用Fe取代Mn后,化合价的变化将平衡从超交换主导的相互作用转变为RKKY主导的相互作用。使用我们的电子结构计算,我们对化学和磁性混合基团的扩展进行了参数化,并使用蒙特卡罗模拟来证明铁磁(FM)到反铁磁(AFM)行为取决于实验研究的组成。通过检查磁性和化学相关性的低温集合平均值,我们确定了固溶体中磁性硬化的机制。;我们在利用团簇扩展方面的多次成功,既可以深入分析失效并成功描述复杂的化学-电磁相互作用,也可以激发实验驱动的哈密顿量格方法。对于合金,团簇膨胀哈密顿量将原子级的密度泛函理论的复杂多体电子问题简化为一系列简单的按位基函数(例如,位点占据变量的乘积)。所得的能量多项式在计算上不昂贵,因此适合于随机方法所需的大型系统的(数千次)计算。我们提出了一种新的方法来“逆向”运行统计力学问题,利用高温观测和热力学联系来构造有效的哈密顿量,从而预测0开尔文能谱和相关的基态。通过重新检查簇的膨胀系数作为热力学状态变量,并利用熵最大化方法,我们开发了一种算法,仅使用一些无序相的高温实验即可选择簇并确定簇的相互作用。我们证明了我们的方法不仅可以恢复0开氏温度下的稳定基态,而且还可以恢复三个实际的二维和三维合金测试用例的全相行为。

著录项

  • 作者

    Decolvenaere, Elizabeth.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Materials science.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号