首页> 外文学位 >Coherent Diffractive Imaging Near the Spatio-Temporal Limit with High-Harmonic Sources
【24h】

Coherent Diffractive Imaging Near the Spatio-Temporal Limit with High-Harmonic Sources

机译:具有高谐波源的时空极限附近的相干衍射成像

获取原文
获取原文并翻译 | 示例

摘要

This thesis discusses methods for high-resolution static and stroboscopic microscopy using tabletop coherent extreme ultraviolet (EUV) radiation from tabletop high-harmonic generation (HHG) sources. These coherent short wavelength light sources are combined with a lensless, computational, phase and amplitude-contrast technique called ptychographic Coherent Diffractive Imaging (CDI). While ptychographic CDI techniques are currently widespread for visible, EUV and X-ray microscopy, no previous work has been able to achieve at-wavelength resolution of extended samples, especially in a reflection geometry, nor has previous work been able to image periodic samples with high-fidelity. In this work, a combination of experimental methods for high-numerical aperture imaging and novel computational algorithms enabled the highest resolution-to-wavelength demonstrations using any CDI technique. These algorithms include tilted plane correction, which enables high-resolution imaging of surfaces in a reflection geometry, and a powerful technique termed 'modulus enforced probe', which enables both imaging of periodic objects and convergence of the ptychographic CDI algorithm in fewer iterations. Furthermore, the ultrafast pulse duration of the high-harmonic radiation is harnessed to demonstrate proof-of-principle pump-probe imaging of nanostructures, capturing thermal transport processes in nanostructures with an axial resolution of 3 angstroms. Stroboscopic imaging with nanoscale resolution is a critical tool for the investigation of nanoscale heat flow and magnetic switching for the advancement of next generation nano-electronics, data storage, and nano-engineered systems.
机译:本文讨论了使用来自桌面高谐波产生(HHG)源的桌面相干超紫外线(EUV)辐射进行高分辨率静态和频闪显微镜的方法。这些相干短波长光源与无透镜,计算,相位和幅度对比技术(称为谱型相干衍射成像(CDI))组合在一起。虽然目前在可见光,EUV和X射线显微镜中普遍使用了谱型CDI技术,但是以前的工作都无法实现扩展样本的波长分辨率,尤其是在反射几何体中,以前的工作也无法使用高保真度。在这项工作中,将用于高数值孔径成像的实验方法与新颖的计算算法相结合,可以使用任何CDI技术实现最高分辨率至波长的演示。这些算法包括倾斜平面校正(可对反射几何图形中的表面进行高分辨率成像)和强大的技术(称为“模量强制探针”),可对周期性对象进行成像,并且使谱图CDI算法收敛的次数更少。此外,利用高谐波辐射的超快脉冲持续时间来演示纳米结构的原理验证泵浦成像,以3埃的轴向分辨率捕获纳米结构中的热传输过程。具有纳米级分辨率的频闪成像是研究纳米级热流和磁开关的重要工具,可促进下一代纳米电子学,数据存储和纳米工程系统的发展。

著录项

  • 作者

    Gardner, Dennis Floyd, Jr.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Optics.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号