首页> 外文学位 >Epigenetic Regulation of Pluripotent and Multipotent Stem Cell Systems.
【24h】

Epigenetic Regulation of Pluripotent and Multipotent Stem Cell Systems.

机译:多能和多能干细胞系统的表观遗传调控。

获取原文
获取原文并翻译 | 示例

摘要

The epigenome defines what a cell has the potential to do and allows a cell to elicit a response to external cues. This is exemplified in organisms where all the hundreds of different cell types share one genome but differ in their gene expression and response to environmental stimuli. Stem cells with their inherent ability to self-renew and differentiate, are a useful model for studying how the epigenome confers these attribute in a cell. Here I present research performed in two stem cell systems, pluripotent naive human embryonic stem cells and multipotent ovarian cancer stem cells. I use different next-generation sequencing techniques to quantify changes in gene expression and measure three epigenetic characteristics: DNA methylation, histone modifications and genome three-dimensional architecture. From the data generated, I am able to identify regions that regulate gene expression, identify proteins that potentially target these regions, and predict the genes targets of regulatory regions. I have shown that the pluripotent naive human embryonic stem cell line, Elf1, has a more open chromatin structure than primed embryonic stem cells, a known feature of early development. This is observed in their less methylated genome and presence of broad domains of active chromatin modifications. I found that architectural differences between the naive and primed genome can be explained through the presence of histone modifications. I observed that Elf1 naive embryonic stem cells are also a good model for development due to their ability to gain DNA methylation at imprinted regions and gain repressive histone modifications at key genes when pushed forward to a primed-like state. In our multipotent stem cell system, I was able to identify key genes and protein interactions that distinguish ovarian cancer stem cells from the cells in the bulk of the tumor. I was able to link differentially methylated regions to regulatory elements and identify putative gene targets. Many of the interacting proteins and gene targets have previously been shown to be responsible for chemotherapy resistance and quiescence in cancer stem cells. I uncover evidence that ovarian cancer stem cells use pluripotent cell transcription factors at their regulatory elements, creating a surprising and unexpected connection between the two stem cell systems in this study. There is still much to learn about the epigenetic regulatory network in pluripotent and multipotent stem cells and the work presented here can be viewed as a launching pad for future studies.
机译:表观基因组定义了细胞有潜力做什么,并允许细胞引发对外部线索的反应。这在所有数百种不同细胞类型共享一个基因组但其基因表达和对环境刺激的反应不同的生物中得到了体现。具有固有的自我更新和分化能力的干细胞是研究表观基因组如何赋予细胞这些属性的有用模型。在这里,我介绍在两种干细胞系统中进行的研究,即多能天真人类胚胎干细胞和多能卵巢癌干细胞。我使用不同的下一代测序技术来量化基因表达的变化并测量三个表观遗传特征:DNA甲基化,组蛋白修饰和基因组三维结构。从生成的数据中,我能够确定调节基因表达的区域,确定可能靶向这些区域的蛋白质,并预测调节区域的基因靶点。我已经证明,多能幼稚的人类胚胎干细胞系Elf1比引物胚胎干细胞具有更开放的染色质结构,这是早期发育的已知特征。在它们的甲基化程度较低的基因组和活性染色质修饰的宽域存在下,可以观察到这一点。我发现,可以通过组蛋白修饰的存在来解释天真基因组和引发基因组之间的架构差异。我观察到,Elf1天真胚胎干细胞由于能够在印迹区域获得DNA甲基化,并在推向启动状态时在关键基因上获得抑制性组蛋白修饰,因此也是良好的发育模型。在我们的多能干细胞系统中,我能够鉴定出关键的基因和蛋白质相互作用,从而将卵巢癌干细胞与大部分肿瘤细胞区分开。我能够将差异甲基化区域与调控元件连接起来,并确定推定的基因靶标。先前已证明许多相互作用的蛋白质和基因靶标与癌症干细胞的化疗耐药性和静止有关。我发现有证据表明卵巢癌干细胞在其调控元件上使用多能细胞转录因子,从而在这项研究中在两个干细胞系统之间建立了令人惊讶且出乎意料的联系。关于多能和多能干细胞中表观遗传调控网络的知识还有很多,这里介绍的工作可以看作是未来研究的起点。

著录项

  • 作者

    Battle, Stephanie Lauren.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Genetics.;Developmental biology.;Bioinformatics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号