首页> 外文学位 >Conversion of d-xylose to carboxylic acids in a capillary fluidized bed.
【24h】

Conversion of d-xylose to carboxylic acids in a capillary fluidized bed.

机译:在毛细管流化床中将d-木糖转化为羧酸。

获取原文
获取原文并翻译 | 示例

摘要

The demand for renewable biomass as a replacement for fossil fuels has never been greater. Many paths to convert carbohydrates into higher value products are under investigation. Few studies have reported data at high temperature and almost no experiments have examined high temperature catalytic partial oxidation of carbohydrates. We need generalized design criteria to exploit this technology commercially.;We present a new method to valorize C5 sugars and review state of the art C5 sugar reactions. We wanted to develop optimal process conditions to produce desirable acids and eventually to test new catalysts for other applications.;We studied the gas phase heterogeneous catalytic oxidation of xylose in a gas-solid catalytic capillary fluidized bed reactor at relatively high temperature and atmospheric pressure. We oxidized the sugar over three catalyst system (vanadyl pyrophosphate, molybdenum trioxide-cobalt oxide and iron molybdate) to form organic acids/anhydrides. We injected a water-sugar solution into a capillary fluidized bed reactor whose main component is a quartz tube (ID = 8 mm) in a furnace that operates at up to 1000 °C. We determine the range of possible operating conditions with a scouting study and then made an experimental design. The most important factors were temperature (200-550 °C), xylose concentration (3 %wt, 7 %wt, 10 % wt in water), residence time (0.1 s, 0.2 s), oxygen partial pressure (0 %vol, 3 %vol, 10 %vol, 21 %vol in nitrogen), and catalyst (VPP, MoO3/CoO, FeMoO). Co-feeding nitrogen improved atomization. Parameters that affected atomization are gas-to-liquid ratio (0.1-0.2 %wt), liquid flow rate (0.01-0.1 ml min-1 ), and nozzle tip and capillary tube diameter. We had four categories of spray performance: 'a', 'b', 'c' and 'd' in decreasing order of performance. We used a mixed design of experiments including two factors: four temperatures (300 °C, 350 °C, 400 °C, 450 °C) and two oxygen partial pressures (3 %vol, 10 %vol) with VPP catalyst. We used type 'a' atomization to verify the effect of other parameters and type 'b' to verify the effect of atomization performance on yield. We also tested sequentially feeding of xylose-oxygen followed by air at a frequency of 5 min-1 . The experimental plan included 2 h and 4 h runs to test catalyst stability.;Residence time inside the catalytic bed was 0.2 s and experiments lasted 4 h. The fluidization gas contained 3 %vol and 10 %vol oxygen in nitrogen and entered the reactor through a fritted glass distributor. The inlet fluidizing gas stream varied between 80-150 ml/min to meet 3 % vol and 10 %vol oxygen. We carried out most experiments with 1 g of calcined VPP catalyst. We metered the 3 %wt xylose solution at 0.04 ml min-1 with a syringe pump. We atomized the liquid into small drops through a 0.25 mm capillary tube constricted at the end nozzle. We fed nitrogen and the liquid solution with the gas-to-liquid ratio of 0.18 %wt to produce an effervescent spray. The droplets vapourized rapidly and the xylose reacted to form maleic anhydride, acrylic acid and acrolein.;We absorbed the liquid products (acids) from the reactor effluent in distilled water in a series of quenches. We sampled and analyzed the accumulated acids offline with high performance liquid chromatography (HPLC). We validated the HPLC analysis with gas chromatography (GC) and tried to identify other possible products.;Operating conditions have a considerable effect on product distribution and production rates. Acrylic acid was the most desirable and maleic acid the most abundant. Vanadyl pyrophosphate is both active and selective for this process and in the best case, at 300 °C and 10 %vol oxygen, maleic acid, acrylic acid and acrolein yields were 25 %, 17 % and 11 %, respectively. We also detected gaseous carbon dioxide with GCMS during the reaction. Thermogravimetric analysis for the VPP samples we withdrew at the end of the reaction confirmed that no coke formed on the catalyst. Powder agglomeration and caramelization were only problematic when the reactor operated outside the range established during the scouting experiments.
机译:对可再生生物质替代化石燃料的需求从未如此高涨。正在研究将碳水化合物转化为高价值产品的许多途径。很少有研究报道高温下的数据,几乎没有实验检查过碳水化合物的高温催化部分氧化。我们需要通用的设计标准来将该技术商业化利用。我们提出了一种新的方法来评估C5糖的价值并审查最新的C5糖反应状态。我们想要开发最佳的工艺条件来生产所需的酸,并最终测试用于其他应用的新型催化剂。我们研究了在较高温度和大气压下在气固催化毛细管流化床反应器中木糖的气相非均相催化氧化。我们在三种催化剂体系(焦磷酸钒钒,三氧化钼-氧化钴和钼酸铁)上将糖氧化,形成有机酸/酸酐。我们将糖溶液注入毛细管流化床反应器中,该反应器的主要成分是在最高1000°C的炉中的石英管(ID = 8 mm)。我们通过调查研究确定可能的工作条件范围,然后进行实验设计。最重要的因素是温度(200-550°C),木糖浓度(在水中3%wt,7%wt,10%wt),停留时间(0.1s,0.2s),氧分压(0%vol,氮气中3%vol,10%vol,21%vol)和催化剂(VPP,MoO3 / CoO,FeMoO)。共进料氮改善了雾化。影响雾化的参数是气液比(0.1-0.2%wt),液体流速(0.01-0.1 ml min-1)以及喷嘴尖端和毛细管直径。我们有四类喷涂性能:按性能降序排列的“ a”,“ b”,“ c”和“ d”。我们使用了包含两个因素的混合实验设计:四个温度(300°C,350°C,400°C,450°C)和两个VPP催化剂的氧分压(3%vol,10%vol)。我们使用“ a”型雾化来验证其他参数的影响,使用“ b”型雾化性能来验证产率。我们还测试了以5 min-1的频率依次喂入木糖氧和空气的顺序。实验计划包括2 h和4 h运行以测试催化剂的稳定性。催化剂床内的停留时间为0.2 s,实验持续4 h。流化气体在氮气中包含3%vol和10%vol的氧气,并通过烧结玻璃分配器进入反应器。入口流化气流在80-150 ml / min之间变化,以满足3%vol和10%vol的氧气。我们使用1 g煅烧的VPP催化剂进行了大多数实验。我们用注射泵以0.04 ml min-1计量加入3%wt的木糖溶液。我们通过末端喷嘴处收缩的0.25毫米毛细管将液体雾化成小滴。我们以0.18%(重量)的气液比喂入氮气和液体溶液,以产生泡腾喷雾。液滴迅速汽化,木糖反应形成顺丁烯二酸酐,丙烯酸和丙烯醛。我们通过一系列骤冷将反应器流出物中的液体产物(酸)吸收到蒸馏水中。我们通过高效液相色谱(HPLC)离线采样并分析了累积的酸。我们通过气相色谱(GC)验证了HPLC分析并试图鉴定其他可能的产物。操作条件对产物分布和生产率有相当大的影响。丙烯酸是最理想的,而马来酸是最丰富的。钒酸焦磷酸酯既有活性也有选择性,在最佳情况下,在300°C和10%(体积)氧气下,马来酸,丙烯酸和丙烯醛的收率分别为25%,17%和11%。在反应过程中,我们还用GCMS检测到气态二氧化碳。在反应结束时取出的VPP样品的热重分析证实,催化剂上未形成焦炭。仅当反应器在球探实验中确定的范围之外运行时,粉末的团聚和焦糖化才成为问题。

著录项

  • 作者

    Ghaznavi, Touraj.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Chemical engineering.;Analytical chemistry.;Inorganic chemistry.;Organic chemistry.
  • 学位 M.Sc.A.
  • 年度 2014
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号