首页> 外文学位 >A Hybrid Dynamical Systems Theory for Legged Locomotion.
【24h】

A Hybrid Dynamical Systems Theory for Legged Locomotion.

机译:腿部运动的混合动力系统理论。

获取原文
获取原文并翻译 | 示例

摘要

Legged locomotion arises from intermittent contact between limbs and terrain. Since it emerges from a closed-loop interaction, reductionist study of body mechanics and terrestrial dynamics in isolation have failed to yield comprehensive strategies for forward-- or reverse--engineering locomotion. Progress in locomotion science stands to benefit a diverse array of engineers, scientists, and clinicians working in robotics, neuromechanics, and rehabilitation. Eschewing reductionism in favor of a holistic study, we seek a systems--level theory tailored to the dynamics of legged locomotion.;Parsimonious mathematical models for legged locomotion are hybrid, as the system state undergoes continuous flow through limb stance and swing phases punctuated by instantaneous reset at discrete touchdown and liftoff events. In their full generality, hybrid systems can exhibit properties such as nondeterminism and orbital instability that are inconsistent with observations of organismal biomechanics. By specializing to a class of intrinsically self--consistent dynamical models, we exclude such pathologies while retaining emergent phenomena that arise in closed--loop studies of locomotion.;Beginning with a general class of hybrid control systems, we construct an intrinsic state--space metric and derive a provably--convergent numerical simulation algorithm. This resolves two longstanding problems in hybrid systems theory: non-trivial comparison of states from distinct discrete modes, and accurate simulation up to and including Zeno events. Focusing on models for periodic gaits, we prove that isolated discrete transitions generically lead the hybrid dynamical system to reduce to an equivalent classical (smooth) dynamical system. This novel route to reduction in models of rhythmic phenomena demonstrates that the closed--loop interaction between limbs and terrain is generally simpler than either taken in isolation. Finally, we show that the non-smooth flow resulting from arbitrary footfall timing possesses a non-classical (Bouligand) derivative. This provides a foundation for design and control of multi--legged maneuvers. Taken together, these contributions yield a unified analytical and computational framework --- a hybrid dynamical systems theory --- applicable to legged locomotion.
机译:腿部运动源于四肢与地形之间的间歇性接触。由于它是从闭环相互作用中产生的,因此,对人体力学和孤立的地球动力学的还原论研究未能得出用于正向或反向工程运动的综合策略。运动科学的进步将使从事机器人技术,神经力学和康复的各种工程师,科学家和临床医生受益。避开简化论以利于进行整体研究,我们寻求一种针对腿部运动的动力学而量身定制的系统级理论;腿部运动的简化数学模型是混合的,因为系统状态通过肢体姿势连续不断地流动,并且摆动阶段由离散触地和起飞事件时的瞬时复位。就其总体而言,混合系统可表现出诸如不确定性和轨道不稳定性之类的特性,这些特性与有机生物力学的观察结果不一致。通过专门研究一类内在自洽的动力学模型,我们排除了此类病理,同时保留了运动闭环研究中出现的新兴现象。从一类普通的混合控制系统开始,我们构建了内在状态-空间度量并推导可证明的收敛数值模拟算法。这解决了混合系统理论中两个长期存在的问题:来自不同离散模式的状态的非平凡比较,以及直至和包括芝诺事件的精确模拟。着眼于周期性步态模型,我们证明了孤立的离散过渡通常会导致混合动力系统简化为等效的经典(平稳)动力系统。这种减少节奏现象模型的新颖方法表明,肢体和地形之间的闭环交互作用通常比单独进行时要简单。最后,我们证明了由任意人为落脚的时机产生的非光滑流具有非经典(Bouligand)导数。这为设计和控制多腿机动提供了基础。综合起来,这些贡献产生了一个统一的分析和计算框架-一种混合动力系统理论-适用于腿部运动。

著录项

  • 作者

    Burden, Samuel A.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号