首页> 外文学位 >Engineering Biomolecular Interactions to Enhance Selectivity in Chromatographic Separations.
【24h】

Engineering Biomolecular Interactions to Enhance Selectivity in Chromatographic Separations.

机译:工程生物分子相互作用,以提高色谱分离的选择性。

获取原文
获取原文并翻译 | 示例

摘要

The emergence of novel mixed-mode and custom affinity chromatographic media presents an opportunity to reduce the number of process steps and improve the economics of purification processes by taking advantage of the improved affinity and selectivity of these chemically-complex ligands. This project utilized a fundamental investigation of protein-ligand interactions across the spectrums of affinity and selectivity to establish design principles for engineering a desired set behavior into chromatographic separations.;An initial comparison between two homologous mixed-mode cation-exchange ligands revealed that differences in the geometric presentation of a hydrophobic aromatic moiety significantly altered the elution behavior of selected proteins, specifically the selectivity of these ligands towards aromatic-type hydrophobic regions present on the protein surface. This selective effect was demonstrated to be insensitive to variations in surface ligand density or the presence of fluid phase modifiers.;A high-throughput screen of ionic salts, amino acids and small organic solutes as eluents revealed that the hydration state these co-solutes was instrumental in altering the balance of electrostatic and hydrophobic interactions in multimodal systems, thus creating selective conditions for the recovery of product and removal of aggregate species in linear gradient and weak partitioning column separations that were able to remove aggregate impurities while maintaining a high recovery of the monomer product species.;Further investigations into a homologous series of mixed-mode cation-exchange ligands revealed that ligand chemistry and geometry had additional influences on the adsorptive properties of these complex molecules. Using the combined retention data of ion-exchange and mixed-mode ligand datasets, a QSAR model was constructed that folded ligand properties with protein surface properties to accurately predict protein retention behavior across this spectrum of chromatographic ligands and could predict the retention of these proteins on novel mixed-mode resins in silico.;Studies of increasingly complex peptide-based ligands showed that the proper presentation of complementary chemical properties to a targeted protein surface could be used to design ligands with enhanced affinity and selectivity for a target protein. Using a combination of high-throughput techniques consisting of microarray screening and 96-well plate experiments, a high-affinity peptide ligand was selected from the initial library (designed in silico) and rapidly scaled up to a small-scale column that could separate a target protein from harvested cell culture fluid.;This work demonstrates that the fundamental principles of biomolecular interactions can be used to engineer molecular selectivity into novel mixed-mode and peptide affinity ligands and should be applied to both simplify the selection of operating conditions and maximize the separation potential of these chromatographic operations.
机译:新型混合模式和自定义亲和色谱介质的出现为减少处理步骤的数量和利用这些化学复杂配体的亲和力和选择性提高带来了提纯经济性的机会。该项目利用了对亲和力和选择性谱图上蛋白质-配体相互作用的基础研究,建立了将所需的设定行为工程化为色谱分离方法的设计原则。两个同源混合模式阳离子交换配体的初步比较表明,两者之间存在差异疏水性芳香族部分的几何结构显着改变了所选蛋白质的洗脱行为,特别是这些配体对存在于蛋白质表面的芳香族型疏水性区域的选择性。事实证明,这种选择性作用对表面配体密度的变化或液相改性剂的存在不敏感。高通量筛选离子盐,氨基酸和小的有机溶质作为洗脱剂时,发现这些共溶质的水合状态为有助于改变多峰系统中静电和疏水相互作用的平衡,从而为线性梯度梯度分离和弱分离柱分离创造了产物回收和聚集体去除的选择性条件,这些分离能够去除聚集体杂质,同时又保持了较高的回收率。对一系列混合模式阳离子交换配体的同源性的进一步研究表明,配体的化学性质和几何形状对这些复杂分子的吸附性能具有额外的影响。使用离子交换和混合模式配体数据集的保留数据组合,构建了一个QSAR模型,该模型折叠了具有蛋白质表面特性的配体特性,以准确预测该色谱配体光谱中的蛋白质保留行为,并可以预测这些蛋白质在蛋白质上的保留。新型基于计算机的混合模式树脂;对日益复杂的基于肽的配体的研究表明,可以将互补化学性质正确呈现给目标蛋白质表面,以设计对目标蛋白质具有更高亲和力和选择性的配体。结合使用高通量技术(包括微阵列筛选和96孔板实验),从初始文库(计算机设计)中选择了高亲和力的肽配体,并迅速扩大规模以分离出一个小规模的色谱柱。这项工作表明,生物分子相互作用的基本原理可用于将分子选择性工程化为新型的混合模式和肽亲和配体,并且应同时用于简化操作条件的选择和最大程度地利用这些色谱操作的分离潜力。

著录项

  • 作者

    Woo, James.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号