首页> 外文学位 >Development and application of the Reaxff potential for heterogeneous catalysis and metal oxidation: Toward the dynamic sampling of large free energy surface.
【24h】

Development and application of the Reaxff potential for heterogeneous catalysis and metal oxidation: Toward the dynamic sampling of large free energy surface.

机译:用于多相催化和金属氧化的Reaxff势的开发和应用:走向大自由能表面的动态采样。

获取原文
获取原文并翻译 | 示例

摘要

A ReaxFF force field has been developed to describe the complex catalytic chemical reactions on the surface of the iron/iron carbide Fischer-Tropsch (FT) catalysts. Based on fitting parameters against an extensive training set containing data obtained from both ab-initio calculations and experimental measurements, the ReaxFF potential can reproduce reasonably well the potential energy surface of a relevant Fe/C/H/O atomistic system. The force field is first validated by performing molecular dynamics (MD) simulations to describe the dissociative adsorption and desorption of hydrogen molecules on iron and iron carbide surfaces. It was found that the existence of carbon atoms at the subsurface sites tends to increase the hydrogen dissociation barrier on the surface, and also stabilizes the adsorbed surface hydrogen atom.;We then used this force field to study the complex catalytic surface chemistry as one will typically encounter at the initial stage of the FT synthesis. By performing MD simulations using relevant atomistic systems, the carbon monoxide methanation and the hydrocarbon chain initiation processes were studied. It was found that the catalytic methanation initiates from the undissociated CO molecules absorbed on the surface of the catalyst. This process leads to the generation of surface absorbed CHx- groups which initiate the synthesis of methane and the hydrocarbon chain growth. Direct hydrogenation of the surface carbide was not observed in the simulation. Coordination analysis of the carbon atoms in the system shows that the surface carbon atoms tend to diffuse toward the subsurface sites. This diffusion indicates the tendency of the formation of iron carbide at elevated temperatures. Furthermore, MD simulations enable us to investigate the various reaction pathways of key intermediates under FT conditions. We found that the surface CH- groups can dissociate into surface carbon atoms or be further hydrogenated into CH 2- groups. The latter is an important intermediate species in the synthesis of methane as well as the chain initiation. Results from the C-C coupling simulation suggested the preference of coupling between CH- and CH2- groups. These results agree with the available experimental observations and ab-initio based study. This study demonstrates that the ReaxFF reactive potential can efficiently probe the catalytic heterogeneous interface, generate complex reaction networks, and hence improve our mechanistic understanding of heterogeneous catalysis.;During catalytic surface reactions, the metal materials will also experience oxidation and corrosion under realistic working conditions at high temperature. In order to study the metal oxidation phenomenon, we have developed a new ReaxFF potential for the Ni/O system. The force field was validated by performing MD simulations of self-diffusion of nickel and the interstitial diffusion of oxygen. The predicted diffusivity and the activation energy achieved quantitative agreement with their respective published values. Furthermore, this force field enables us to study the effects of vacancies on the diffusion of interstitial oxygen and the successive initiation of internal oxidation. A new oxygen diffusion mechanism is proposed in which the oxygen atom diffuses via the movement of the oxygen-vacancy pair. In addition, our MD simulation results suggest that the voids at the grain boundaries can induce local oxygen segregation due to the strong oxygen-vacancy binding effect. This segregation is responsible for the formation of nickel oxide particles in subsurface voids. These results demonstrate that the ReaxFF MD study can contribute to bridging the gap between the QM calculations and the experimental observations in the study of metal oxidation.
机译:已经开发了ReaxFF力场来描述铁/碳化铁费-托(FT)催化剂表面的复杂催化化学反应。基于针对包含从头算和实验测量获得的数据的广泛训练集拟合参数,ReaxFF势可以合理地重现相关Fe / C / H / O原子系统的势能面。首先通过执行分子动力学(MD)模拟来验证力场,以描述氢分子在铁和碳化铁表面上的解离吸附和解吸。发现在次表面处碳原子的存在趋向于增加表面上的氢离解势垒,并且还稳定了被吸附的表面氢原子。;然后,我们利用这一力场研究了复杂的催化表面化学。通常在FT合成的初始阶段遇到。通过使用相关的原子系统进行MD模拟,对一氧化碳甲烷化和烃链引发过程进行了研究。已经发现,催化甲烷化是由吸附在催化剂表面的未离解的CO分子引发的。该过程导致表面吸收的CHx-基团的生成,这些基团开始甲烷的合成和烃链的生长。在模拟中未观察到表面碳化物的直接氢化。对系统中碳原子的配位分析表明,表面碳原子倾向于向地下位置扩散。这种扩散表明在高温下形成碳化铁的趋势。此外,MD模拟使我们能够研究FT条件下关键中间体的各种反应途径。我们发现表面CH-基团可以解离为表面碳原子或进一步氢化为CH2-基团。后者是甲烷合成以及链引发中的重要中间体。 C-C偶联模拟的结果表明,CH-和CH2-基团之间的偶联更可取。这些结果与可用的实验观察结果和基于ab-initio的研究一致。这项研究表明ReaxFF反应电位可以有效地探测催化异质界面,生成复杂的反应网络,从而提高我们对异质催化的机械理解。;在催化表面反应过程中,金属材料还将在现实的工作条件下经历氧化和腐蚀在高温下。为了研究金属氧化现象,我们为Ni / O系统开发了一种新的ReaxFF电位。力场通过执行镍的自我扩散和氧的间隙扩散的MD模拟来验证。预测的扩散率和活化能与它们各自公开的值实现了定量一致。此外,该力场使我们能够研究空位对间隙氧扩散和内部氧化的连续引发的影响。提出了一种新的氧扩散机制,其中氧原子通过氧-空位对的移动而扩散。另外,我们的MD模拟结果表明,由于强的氧-空位结合作用,晶界处的空隙可引起局部氧偏析。这种偏析负责在地下空隙中形成氧化镍颗粒。这些结果表明,ReaxFF MD研究有助于弥合QM计算与金属氧化研究中的实验观察之间的差距。

著录项

  • 作者

    Zou, Chenyu.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号