首页> 外文学位 >Applications of thin carbon coatings and films in injection molding.
【24h】

Applications of thin carbon coatings and films in injection molding.

机译:薄碳涂层和薄膜在注塑成型中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer.;During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts.;Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (<10 wt. %) due to the dispersion difficulty and exponential increase in viscosity.;In this research, the technical feasibility of a new approach to EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. For many years, in-mold coating (IMC) has been commercially applied to Sheet Molding Compound (SMC) compression molded parts, as an environmentally friendly approach to improve its surface quality and provide the required conductivity for electrostatic painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness and 71wt.% to 79wt.% in the nanopaper itself after resin infusion) and high conductivity of the nanopaper. Instead of premixing nanoparticles with IMC coating, nanopapers enable the use of low viscosity IMC without CB coating to impregnate the CNF network in order to reach high electrical conductivity and EMI shielding values. (Abstract shortened by UMI.).
机译:在这项研究中,证明了两种新的薄碳涂层应用的技术可行性。第一项应用是在模具上使用薄碳涂层,以通过促进壁滑来在较低压力下成型超薄塑料零件(厚度小于0.5毫米)。第二个应用程序包括一种新方法,该方法为在模制涂覆的纳米颗粒薄膜或纳米纸中用于塑料部件提供电磁干扰(EMI)屏蔽,以创建导电顶层。提供较低压力下的超薄零件的注塑成型,而无需快速加热/快速冷却或其他昂贵的模具修改。我们小组中其他成员的内部开发程序用于通过化学气相沉积(CVD)涂覆模具表面,从而形成石墨烯涂层,碳化物与模具表面结合在一起。与未涂覆的涂料相比,该涂料可显着降低表面摩擦并因此易于流动。热塑性聚合物及其复合材料是非常有吸引力的替代品,但由于聚合物的非导电性而受到阻碍。迄今为止,有两种通用方法可实现塑料产品的EMI屏蔽。一种方法是在塑料表面上喷涂导电金属涂层,形成一层必须在产品的整个预期使用寿命内保持其屏蔽效果(SE)和其对塑料的粘附力的层。然而,金属涂层增加了不希望的重量,并且随着时间的流逝倾向于腐蚀。此外,刮擦涂层可能会导致屏蔽故障。因此,可能需要保护性面漆。另一种方法是使用填充有导电填料(例如炭黑(CB),碳纳米纤维(CNF)和碳纳米管(CNT))的聚合物复合材料。尽管导电填料可提高聚合物复合材料的电导率,但由于分散困难和粘度呈指数增加,此类填料的填充量常常无法达到很高的水平(<10 wt。%)。事实证明,在模制涂覆的纳米颗粒薄膜或纳米纸中使用一种新的塑料部件EMI屏蔽方法可创建导电顶层。多年来,模内涂料(IMC)已作为片材模塑料(SMC)压模零件的商业应用,作为一种环保方法来改善其表面质量并提供使用炭黑(CB)进行静电喷涂所需的导电性。这样的过程也可以应用于用于形成顶部导电层的注射成型。增加CB的量将增加涂层零件的表面电导率,从而提高涂料转移效率。但是,达到实现EMI屏蔽所需的电导率水平所需的CB含量会使涂层粘度过大,无法进行正确的涂层。纳米纸基复合材料是EMI屏蔽的极佳候选材料,因为纳米纸的碳纳米纤维(CNFs)浓度高(取决于纳米纸/热塑性塑料的厚度,约2 wt%至10 wt%,树脂后的纳米纸本身占71 wt。%至79 wt。%。输液)和纳米纸的高电导率。纳米纸代替了将纳米颗粒与IMC涂层预混合的方法,可以使用不带CB涂层的低粘度IMC来浸渍CNF网络,以达到高电导率和EMI屏蔽值。 (摘要由UMI缩短。)。

著录项

  • 作者

    Cabrera, Eusebio Duarte.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Industrial engineering.;Nanotechnology.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号