首页> 外文学位 >Nanometer-thick oxide films for pyroelectric energy conversion.
【24h】

Nanometer-thick oxide films for pyroelectric energy conversion.

机译:用于热电能量转换的纳米级氧化膜。

获取原文
获取原文并翻译 | 示例

摘要

Pyroelectric energy conversion utilizes the temperature dependence of spontaneous polarization in crystalline materials to convert waste heat into electricity. High-power-density thermal-to-electrical energy conversion is possible using pyroelectric thin films which allow fast thermal cycling and high electric fields. Published studies, however, have not investigated pyroelectric energy conversion in nanometer-thick films. In addition, there is a lack of suitable techniques for characterization of pyroelectric and other related temperature-dependent properties of thin films. This work develops and implements techniques for temperature-dependent piezoelectric and pyroelectric characterization of nanometer-thick films, and investigates pyroelectric energy conversion using high-frequency thermal-electrical cycles.;Phase-sensitive techniques measured high-temperature electromechanical and pyroelectric response in ~100 nm thick PbZr0.2Ti0.8O 3 films deposited using pulsed laser deposition. Piezoresponse force microscopy (PFM), an atomic force microscopy (AFM) based technique, measured the electromechanical response while a doped-silicon resistive micro-heater provided local temperature control up to 400 °C. Three techniques characterized the pyroelectric response using temperature oscillations generated by a hotplate, a microfabricated heater, or a modulated laser. The pyroelectric current was measured from a microelectrode fabricated onto the film over a heating frequency range 0.02 Hz -- 1.3 MHz.;This work investigated pyroelectric energy conversion in ~200 nm thick epitaxial BaTiO3 films using a microfabricated platform that allowed simultaneous thermal and electrical control. The low thermal mass of the active material and precise thermal-electrical control enabled pyroelectric cycles up to 3 kHz frequency and maximum power density of 30 W/cm3. In comparison, earlier studies were typically limited to cycle frequencies less than 1 Hz and the highest reported power density was 0.11 W/cm 3. In addition to studying high frequency thermal-electrical cycles, this dissertation also examined the effect of variations in temperature and electric field with microsecond temporal resolution. This work will facilitate the design and operation of pyroelectric cycles with high energy and power densities.;This dissertation reports advancements in piezoelectric and pyroelectric characterization of thin films, and presents high-power-density solid-state pyroelectric energy conversion which could be useful for future waste heat harvesting applications.
机译:热电能量转换利用晶体材料中自发极化的温度依赖性将废热转换为电能。使用热释电薄膜可以实现高功率密度的热电能量转换,该薄膜允许快速的热循环和高电场。然而,已发表的研究尚未研究纳米厚膜中的热电能量转换。另外,缺乏合适的技术来表征薄膜的热电性质和其他相关的温度相关性质。这项工作开发并实现了对温度敏感的纳米厚膜压电和热电特性进行表征的技术,并研究了使用高频热电循环的热电能量转换。相敏技术在约100的温度下测量了高温机电和热电响应使用脉冲激光沉积法沉积的纳米级PbZr0.2Ti0.8O 3膜。压电响应力显微镜(PFM)是一种基于原子力显微镜(AFM)的技术,它测量了机电响应,而掺杂硅的电阻微加热器提供了高达400°C的局部温度控制。三种技术利用热板,微型加热器或调制激光器产生的温度振荡来表征热电响应。通过在0.02 Hz-1.3 MHz的加热频率范围内在膜上制造的微电极测量热电流;这项工作使用微加工平台在200 nm厚的外延BaTiO3薄膜中研究了热电能量转换,该平台允许同时进行热和电控制。活性材料的低热质量和精确的热电控制使得热电循环的频率高达3 kHz,最大功率密度为30 W / cm3。相比之下,较早的研究通常限于小于1 Hz的循环频率,并且报告的最高功率密度为0.11 W / cm3。除了研究高频热电循环之外,本论文还研究了温度和温度变化的影响。微秒时间分辨率的电场。这项工作将有助于高能量和功率密度的热释电循环的设计和操作。;本论文报道了薄膜的压电和热电表征方面的研究进展,并提出了高功率密度的固态热释电能量转换,可用于未来的余热收集应用。

著录项

  • 作者

    Bhatia, Bikramjit.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号