首页> 外文学位 >Optimization and control of dynamic humanoid running and jumping.
【24h】

Optimization and control of dynamic humanoid running and jumping.

机译:动态人形机器人跑跳的优化与控制。

获取原文
获取原文并翻译 | 示例

摘要

Animals in nature display a nearly seamless capability to navigate the world around them. Whether running up a steep mountain trail, weaving through a dense forest, or jumping to clear obstacles, legged animals are capable to dynamically negotiate challenging terrains with grace and efficiency. The development of legged machines with even a portion of this legged mobility would provide great benefit to applications in defense, search and rescue, and planetary exploration. The objective of this dissertation is to make a significant contribution towards the dynamic capabilities of legged machines, more specifically as applied to humanoid robots.;Humanoid robots represent one potential platform to study legged mobility. Compared to other morphologies, humanoids have increased potential for application in human-inhabited environments due to their structural similarity to humans. Despite the surge of work on humanoids in the recent decade, current machines are not yet capable of any significant dynamic mobility. The development of control systems for dynamic humanoids is a difficult task given their high number of degrees of freedom (DoF), which require continuous coordination, as well as their complex nonlinear dynamics. Even for a basic dynamic movement, such as a high-speed run, current approaches for humanoids are unable to generalize to a range of speeds or turning rates, or have not demonstrated robustness to disturbances.;With the control approach described in this dissertation, a standing long jump, high-speed run, running turn, and running long jump are demonstrated in 3D dynamic simulation with a 26-DoF humanoid model. By focusing on the design and control of the salient features of the dynamic movements, the system is capable to run at speeds of up to 6.5 m/s, which is comparable to the speed of an Olympian in the 5000m race. Advances in whole-body humanoid task-space control are presented, where the control of centroidal momentum is shown to be an enabling approach for dynamic balance control. This approach is shown to result in emergent upper-body motions to maintain balance in a number of examples. Algorithms to compute the task-space inertia matrix and a formulation of the task-space control problem as a conic optimization problem, presented here, provide computational benefits to applications of task-space control.;A high-level running controller based on a 3D-SLIP model is presented to interface with this whole-body controller, resulting in automatic footstep planning to maintain balance across a range of speeds in the face of disturbances. The controller is also shown to be general to produce high-speed running turns. For instance, when running at 3.5 m/s the humanoid is capable to execute a tight turn with a radius that is approximately 1/4 that of a 400m track. Through extensions of the 3D-SLIP model, this framework is also general to produce a running long jump, an aperiodic movement which includes significant underactuated periods of flight. The trajectory optimization approach for this model is shown to result in long-jump strategies that match human long jumpers. Most importantly, a takeoff-velocity angle below the ballistic optimum of 45 degrees is found to maximize jump span.
机译:自然界中的动物显示出几乎无缝的能力来导航周围的世界。无论是沿着陡峭的山路,编织茂密的森林,还是跳跃清除障碍物,有腿的动物都能以优雅和高效的方式动态应对具有挑战性的地形。具有这种腿部机动性的一部分的腿部机器的发展将为国防,搜索和救援以及行星探索中的应用提供极大的好处。本文的目的是为腿式机器的动态性能做出重要贡献,特别是应用于人形机器人。人形机器人代表了一种研究腿式移动性的潜在平台。与其他形态相比,类人生物由于其与人的结构相似性而具有在人居住环境中应用的潜力。尽管近十年来有关类人动物的工作激增,但目前的机器尚不具备任何显着的动态移动性。动态类人动物的控制系统的开发是一项艰巨的任务,因为它们的自由度(DoF)很高,需要持续的协调,而且它们的非线性动力学也很复杂。即使对于基本的动态运动(例如高速奔跑),当前的类人动物方法也无法推广到一定范围的速度或转弯速率,也没有表现出对干扰的鲁棒性。使用26自由度人形模型在3D动态仿真中演示了站立跳远,高速奔跑,奔跑转弯和奔跑远跳。通过专注于动态机芯的显着特征的设计和控制,该系统能够以高达6.5 m / s的速度运行,这与5000m竞赛中的奥林匹亚速度相当。介绍了全身人形任务空间控制的进展,其中质心动量的控制是动态平衡控制的一种可行方法。在许多示例中,该方法均显示出上身的紧急运动以保持平衡。本文介绍的计算任务空间惯性矩阵的算法以及将任务空间控制问题表示为圆锥优化问题的公式,为任务空间控制的应用提供了计算优势。基于3D的高级运行控制器提出了-SLIP模型来与该全身控制器交互,从而实现了自动脚步计划,以在遇到干扰时在各种速度范围内保持平衡。控制器也被证明是通用的,可以产生高速运转的转弯。例如,当以3.5 m / s的速度运行时,人形机器人能够执行半径约为400m轨道半径1/4的急转弯。通过3D-SLIP模型的扩展,该框架通常也可用于产生连续跳远运动,这是一种非周期性运动,其中包括大量的未激活飞行时间。该模型的轨迹优化方法显示出与人类跳远运动员相匹配的跳远策略。最重要的是,发现低于弹道最佳角度45度的起飞-速度角可使跳跃范围最大化。

著录项

  • 作者

    Wensing, Patrick M.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Robotics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号