首页> 外文学位 >Energy deposition into heavy gas plasma via pulsed inductive theta-pinch.
【24h】

Energy deposition into heavy gas plasma via pulsed inductive theta-pinch.

机译:能量通过脉冲感应式热收缩仪沉积到重气等离子体中。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created.;In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer.;In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 mΩ and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J.;In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.
机译:这项研究的目的是研究使用重质气体的脉冲感应等离子体的形成过程,特别是通过θ收缩线圈的形成将存储的电容能耦合到等离子体中的过程。为了帮助这项研究,密苏里州等离子体实验Mk。我(后来是Mk。II)被创建。在第一篇论文中,讨论了差分磁场探头的构造。使用由矢量网络分析仪和脉冲电源系统驱动的亥姆霍兹线圈研究了校准设置对B点探针的影响。在脉冲功率环境中进行校准所产生的校准系数至少比矢量网络分析仪低9.7%。;在第二篇论文中,研究了使用脉冲感应测试物品将能量沉积到各种气体中的方法。将实验数据与一系列RLC模型相结合,以量化在压力为10-100 mTorr的氩气,氢气和氙气中与等离子体形成相关的能量损失。发现等离子体电阻为25.8-51.6mΩ。等离子体电感为41.3--47.0 nH。可以转移到等离子体的最大初始电容存储能量为初始79.2 +/- 0.1 J的6.4 J(8.1%);在第三篇论文中,DC预电离源对等离子体形成能量的影响为研究。发现电离源的径向位置对等离子体形成可重复性的影响可忽略不计,而在低压下发现电压至关重要。没有预电离,就不可能形成等离子体。在20 mTorr的功率下,0.20 W的功率足以稳定放电电流的第一个零交叉附近的等离子体形成。功率增加到1.49 W,电感耦合能量增加了39%。在200 mTorr时,4.3 mW足以产生可重复的等离子体特性。

著录项

  • 作者

    Pahl, Ryan Alan.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Aerospace engineering.;Electrical engineering.;Plasma physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号