首页> 外文学位 >Synthesis, Characterization, and Device Applications of Viral-Templated Copper Sulfide and Copper Oxide Semiconductor Nanomaterials.
【24h】

Synthesis, Characterization, and Device Applications of Viral-Templated Copper Sulfide and Copper Oxide Semiconductor Nanomaterials.

机译:病毒模板硫化铜和氧化铜半导体纳米材料的合成,表征和器件应用。

获取原文
获取原文并翻译 | 示例

摘要

Nature has the ability to mineralize and build intricate nanostructures of inorganic materials with a very high precision. Various bio-molecules can mineralize and control the morphology and composition of inorganic materials at ambient conditions. Inspired by nature, this work focuses on utilizing the M13 virus, a filamentous phage, 880 nm in length and 6 nm in diameter, for mineralizing copper sulfide and copper oxide semiconductor nanomaterials. The various coat proteins of the virus can easily be modified to express different peptides with specific affinity to various inorganic materials. A phage-display technique was utilized to identify a copper sulfide binding peptide expressed on the entire pVIII coat protein of the virus. This modified phage was used for synthesizing copper sulfide nanoparticles along the length of the template. To increase the yield and coverage of the mineralized material on the phage-templates, non-specific electrostatic interactions between a negatively charged phage (E3) and positively charged copper ions were utilized to synthesize copper sulfide at ambient conditions. The mineralized material coated the phage template and was identified to be cubic Cu1.8S, a non-stoichiometric phase of the copper sulfide material system. The material showed strong optical absorption below 800 nm due to band-to-band transitions and localized surface plasmon resonance (LSPR) peaks in the infrared region. The LSPR peaks increased in absorption and the electrical resistance of the materials decreased with time indicating an increase in the number of free carriers in the material due to exposure at ambient conditions. The free carrier increase was attributed to a compositional change on the surface of the material. The synthesized Cu1.8S was utilized to fabricate NH3 gas sensors. These gas sensors showed a high response to NH3 gas which may be attributed to the large surface-to-volume ratio of the viral-templated nanomaterials. Finally, utilizing the non-specific electrostatic interactions between the E3 phage and positively charged cations, copper oxide nanoparticles were also synthesized along the viral-template. These semiconductor materials were identified to be a mixture of CuO and Cu2O with a direct optical band gap of 2.87 eV. These viral-templated semiconductor nanomaterials have potential applications for incorporation into future devices.
机译:大自然具有以非常高的精度矿化和构建无机材料的复杂纳米结构的能力。在环境条件下,各种生物分子可以矿化并控制无机材料的形态和组成。受自然界的启发,这项工作致力于利用M13病毒(一种长880 nm,直径6 nm的丝状噬菌体)矿化硫化铜和氧化铜半导体纳米材料。病毒的各种外壳蛋白可以轻松修饰以表达对各种无机材料具有特定亲和力的不同肽。利用噬菌体展示技术鉴定在病毒的整个pVIII外壳蛋白上表达的硫化铜结合肽。该修饰的噬菌体用于沿着模板的长度合成硫化铜纳米颗粒。为了增加矿物质在噬菌体模板上的产量和覆盖率,在环境条件下利用带负电的噬菌体(E3)和带正电的铜离子之间的非特异性静电相互作用来合成硫化铜。矿化的材料覆盖了噬菌体模板,并被确定为立方晶Cu1.8S,这是硫化铜材料系统的非化学计量相。该材料在800 nm以下显示出强的光吸收,这是由于在红外区域中的能带间跃迁和局部表面等离子体共振(LSPR)峰。 LSPR峰的吸收增加,材料的电阻随时间降低,这表明由于在环境条件下暴露,材料中自由载流子的数量增加。自由载流子增加归因于材料表面上的组成变化。合成的Cu1.8S用于制造NH3气体传感器。这些气体传感器显示出对NH3气体的高响应性,这可能归因于病毒模板纳米材料的较大的表面体积比。最后,利用E3噬菌体和带正电荷的阳离子之间的非特异性静电相互作用,还沿着病毒模板合成了氧化铜纳米颗粒。这些半导体材料被确定为直接光学带隙为2.87 eV的CuO和Cu2O的混合物。这些以病毒为模板的半导体纳米材料具有潜在的应用,可以结合到未来的设备中。

著录项

  • 作者

    Zaman, Mohammed Shahriar.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Electrical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号