首页> 外文学位 >New microfluidic system to increase robustness of electrode performance and develop point-of-care hematocrit device.
【24h】

New microfluidic system to increase robustness of electrode performance and develop point-of-care hematocrit device.

机译:新的微流控系统可提高电极性能的鲁棒性,并开发即时点血细胞比容装置。

获取原文
获取原文并翻译 | 示例

摘要

The present dissertation aimed to develop a new microfluidic system for a point-of-care hematocrit device. Stabilization of microfluidic systems via surfactant additives and integration of semipermeable SnakeSkinRTM membranes was investigated. Both methods stabilized the microfluidic systems by controlling electrolysis bubbles. Surfactant additives, Triton X-100 and SDS stabilized promoted faster bubble detachment at electrode surfaces by lowering surface tension and decreased gas bubble formation by increasing gas solubility. The SnakeSkinRTM membranes blocked bubbles from entering the microchannel and thus less disturbance to the electric field by bubbles occurred in the microchannel. Platinum electrode performance was improved by carbonizing electrode surface using red blood cells. Irreversibly adsorbed RBCs lysed on platinum electrode surfaces and formed porous carbon layers while current response measurements. The formed carbon layers increase the platinum electrode surface area and thus electrode performance was improved by 140 %. The microfluidic system was simplified by employing DC field to use as a platform for a point-of-care hematocrit device. Feasibility of the microfluidic system for hematocrit determination was shown via current response measurements of red blood cell suspensions in phosphate buffered saline and plasma media. The linear trendline of current responses over red blood cell concentration was obtained in both phosphate buffered saline and plasma media. This research suggested that a new and simple microfluidic system could be a promising solution to develop an inexpensive and reliable point-of-care hematocrit device.
机译:本论文旨在为护理点血细胞比容装置开发一种新的微流控系统。研究了通过表面活性剂添加剂和半透SnakeSkinRTM膜的集成来稳定微流体系统。两种方法都通过控制电解气泡来稳定微流体系统。表面活性剂,Triton X-100和SDS稳定剂可通过降低表面张力并通过增加气体溶解度来减少电极表面的气泡分离,并减少气泡的形成。 SnakeSkinRTM膜阻止气泡进入微通道,因此微通道中产生的气泡对电场的干扰较小。通过使用红血球使电极表面碳化来改善铂电极的性能。在进行电流响应测量时,不可逆地吸附的RBC溶解在铂电极表面并形成多孔碳层。形成的碳层增加了铂电极的表面积,因此电极性能提高了140%。通过采用直流场作为现场即时血细胞比容设备的平台,简化了微流控系统。通过在磷酸盐缓冲液和血浆介质中对红细胞悬液的电流响应测量,显示了用于确定血细胞比容的微流体系统的可行性。在磷酸盐缓冲液和血浆介质中均获得了电流响应在红细胞浓度上的线性趋势线。这项研究表明,一种新的简单的微流控系统可能是开发廉价且可靠的即时护理血细胞比容装置的有前途的解决方案。

著录项

  • 作者

    Lee, Hwi Yong.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号