首页> 外文学位 >A comprehensive assessment methodology based on life cycle analysis for on-board photovoltaic solar modules in vehicles.
【24h】

A comprehensive assessment methodology based on life cycle analysis for on-board photovoltaic solar modules in vehicles.

机译:一种基于生命周期分析的综合评估方法,用于车辆中的车载光伏太阳能模块。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a novel comprehensive assessment methodology for using on-board photovoltaic (PV) solar technologies in vehicle applications. A well-to-wheels life cycle analysis based on a unique energy, greenhouse gas (GHG) emission, and economic perspective is carried out in the context of meeting corporate average fuel economy (CAFE) standards through 2025 along with providing an alternative energy path for the purpose of sustainable transportation.;First, the proposed work develops a comprehensive PV system model and optimizes the solar energy to DC electrical power output ratio. Next, it predicts the actual contribution of the on-board PV to reduce fuel consumption, particularly for meeting corporate average fuel economy (CAFE) 2020 and 2025 standards in different scenarios. The model also estimates vehicle range extension via on-board PV and enhances the current understanding regarding the applicability and effective use of on-board PV modules in individual automobiles. Finally, it develops a life cycle assessment (LCA) model (well-to-wheels analysis) for this application. This enables a comprehensive assessment of the effectiveness of an on-board PV vehicle application from an energy consumption, Greenhouse Gas (GHG) emission, and cost life-cycle perspective.;The results show that by adding on-board PVs to cover less than 50% of the projected horizontal surface area of a typical passenger vehicle, up to 50% of the total daily miles traveled by a person in the U.S. could be driven by solar energy if using a typical mid-size vehicle, and up to 174% if using a very lightweight and aerodynamically efficient vehicle. In addition, the increase in fuel economy in terms of combined mile per gallon (MPG) at noon for heavy vehicles is between 2.9% to 9.5%. There is a very significant increase for lightweight and aerodynamic efficient vehicles, with MPG increase in the range of 10.7% to 42.2%, depending on location and time of year.;Although the results show that the plug-in electric vehicles (EVs) do not always have a positive environmental impact over similar gasoline vehicles considering the well-to-wheel span, the addition of an on-board PV system for both vehicle configurations, significantly reduces cycle emissions (e.g., the equivalent savings of what an average U.S. home produces in a 20 month period). The lifetime driving cost (;An added benefit of on-board PV applications is the ability to incorporate additional functionality into vehicles. Results show that an on-board PV system operating in Phoenix, AZ can generate in its lifetime, energy that is the equivalent of what an American average household residential utility customer consumes over a three-year period. However, if the proposed system operates in New Delhi, India, the PV could generate energy in its lifetime that is the equivalent of what an Indian average household residential utility customer consumes over a 33-year period. Consequently, this proposed application transforms, in times of no-use, into a flexible energy generation system that can be fed into the grid and used to power electrical devices in homes and offices. The fact that the output of this system is direct current (DC) electricity rather than alternative current (AC) electricity reduces the wasted energy cost in the generation, transmission, and conversion losses between AC-DC electricity to reach the grid. Thus, this system can potentially reduce the dependency on the grid in third world countries where the energy consumption per home is limited and the grid is unstable or unreliable, or even unavailable. (Abstract shortened by UMI.).
机译:本文提出了一种在车载应用中使用车载光伏(PV)太阳能技术的新型综合评估方法。基于到2025年达到公司平均燃油经济性(CAFE)标准并提供替代能源途径的基础上,进行了基于独特能源,温室气体(GHG)排放和经济前景的轮到车轮生命周期分析。首先,拟议的工作建立了一个综合的光伏系统模型,并优化了太阳能与直流电的输出功率比。接下来,它预测了车载光伏发电对减少燃料消耗的实际贡献,特别是在不同场景下满足公司平均燃料经济性(CAFE)2020和2025标准的情况。该模型还估计了通过车载PV进行的车辆续驶里程,并增强了有关单个汽车中车载PV模块的适用性和有效使用的当前理解。最后,它为此应用开发了生命周期评估(LCA)模型(轮对轮分析)。这可以从能耗,温室气体(GHG)排放和成本生命周期的角度全面评估车载PV车辆应用的有效性。结果表明,通过添加车载PV覆盖不到如果使用典型的中型车辆,则可使用太阳能驱动典型乘用车的预计水平表面积的50%,最多可占美国人每天行驶总里程的50%,而可乘的功率可达174%如果使用非常轻巧和空气动力学高效的车辆。此外,重型车辆中午的燃油经济性提高(合计每加仑英里数)在2.9%至9.5%之间。轻量化和空气动力学高效汽车的增长非常显着,MPG的增长幅度在10.7%到42.2%之间,具体取决于一年中的位置和时间。尽管结果表明插电式电动汽车(EV)确实考虑到良好的轮距,并不总是对同类汽油车产生积极的环境影响,为两种车辆配置增加了车载光伏系统,可显着减少循环排放(例如,相当于美国普通房屋的节能量)在20个月内产生)。终身驱动成本(;车载光伏应用的另一个好处是能够将附加功能集成到车辆中。结果表明,在亚利桑那州凤凰城运行的车载PV系统可以在其使用寿命内产生与之相当的能量三年中美国普通家庭用户的平均消费量。但是,如果拟议的系统在印度新德里运行,光伏发电系统在使用期内的发电量将相当于印度普通家庭用户的平均消费量。客户消耗了33年的时间,因此,该提议的应用程序在不使用时转变为一种灵活的能源发电系统,该系统可以馈入电网并为家庭和办公室的电气设备供电。该系统的输出是直流(DC)电,而不是交流(AC)电,从而减少了发电,输电和转换过程中浪费的能源成本n AC-DC电力到达电网之间的损耗。因此,该系统可以潜在地减少在第三世界国家/地区对电网的依赖性,在第三世界国家中,每个家庭的能源消耗受到限制,并且电网不稳定或不可靠,甚至不可用。 (摘要由UMI缩短。)。

著录项

  • 作者

    Abdelhamid, Mahmoud Masad.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Automotive engineering.;Alternative Energy.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 388 p.
  • 总页数 388
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号