首页> 外文学位 >A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers.
【24h】

A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers.

机译:低雷诺数下的低失速比机翼侧倾失速和固有稳定性模式的模型。

获取原文
获取原文并翻译 | 示例

摘要

The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles.;The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the variation in the Cl ,beta derivative. These are purely aerodynamic modes which are demonstrated to be inherently present in LAR wings.;To compare the impact of the roll stability derivative at high and low aspect ratios, a model for roll stall is developed which represents the tip vortices as infinite line vortices and estimates their influence on the surface pressure distribution of the wing; results for the roll moment coefficient are favorably compared with experimental data, and are used to compute Cl ,beta. By estimating the induced spanwise lift acting on a rolling wing, the roll damping derivative may also be computed and, along with the roll stability derivative, used to populate a simplified stability matrix for LAR wings. Solving for the eigenvalues of this system of equations at aspect ratios ranging from the near-unity values applicable to MAVs to high aspect ratio configurations reveals fundamentally different stability regimes. At cruise conditions, aspect ratios below 3.3 do not experience significant roll damping and the large magnitudes of roll stall instigate the divergent Dutch roll mode described by an unstable, complex eigenvalue. At higher aspect ratios above AR = 4.6, the eigenvalues cross into the left side of the complex plane and the lateral mode becomes stable, causing the wing to behave in a conventional, high aspect ratio manner. The disparity in lateral stability regimes between high and low aspect ratios at this Reynolds number suggests a potential explanation for why MAVs are prone to lateral instabilities, as their wings are inherently affected by unique flow physics which are not experienced by more conventional aircraft with a longer span.
机译:微型飞行器的发展由于对低雷诺数域的气动载荷以及稳定性和控制特性的了解不足而受到阻碍,其中固有的低长宽比(LAR)机翼在其中运行。本文通过实验评估静态和阻尼空气动力学稳定性导数,以为雷诺数小于1 x 105的纵横比接近于1的规范平板机翼提供完整的空气动力学模型。这可以表达空气动力和力矩的完整功能,并且求解运动方程,从而确定机翼固有的稳定性。这为表征整车的稳定性提供了基础。在侧滑扰动过程中,尖端涡流的影响引起了称为侧倾失速的加载条件,该侧倾是由与位移相关的翼展方向速度不对称性产生的显着侧倾力矩相对于机翼的旋涡芯。侧倾失速表现为侧倾力矩线性增加,攻角低至中度,随后发生的失速事件类似于升力极。传统(高长宽比)机翼没有这种现象。所产生的较大的侧倾稳定性导数Cl,β和缺乏侧倾阻尼Cl,rho会产生横向状态变量的显着模态响应。显示了用于评估这些模式的线性模型,以准确反映通过对非线性方程进行数值积分而获得的解。不稳定的荷兰式侧倾模式会控制机翼的行为,以平衡时产生较小的扰动,并且在迎角振荡的情况下,可以看到以前未考虑的耦合模式(称为侧倾共振)形成并驱动了倾斜角?偏离平衡。横摇共振需要线性时间变化(LTV)模型来捕获倾斜角的行为,这是由于Cl,β导数的变化所致。这些是纯粹的空气动力学模式,被证明固有存在于LAR机翼中。为了比较高和低纵横比下的侧倾稳定性导数的影响,建立了侧倾失速模型,该模型将尖端涡旋表示为无限线涡旋。估计它们对机翼表面压力分布的影响;侧倾力矩系数的结果与实验数据进行了比较,并用于计算Cl,β。通过估计作用在滚动机翼上的翼展方向升力,还可以计算出侧倾阻尼导数,并将其与侧倾稳定性导数一起用于填充LAR机翼的简化稳定性矩阵。从适用于MAV的近似单位值到高长宽比配置的长宽比解决此方程组的特征值,揭示了根本不同的稳定性体系。在巡航条件下,低于3.3的纵横比不会产生明显的侧倾阻尼,并且较大的侧倾失速会引发由不稳定,复杂的特征值所描述的发散的荷兰侧倾模式。在高于AR = 4.6的较高长宽比下,特征值进入复杂平面的左侧,并且横向模式变得稳定,导致机翼以常规的高长宽比方式工作。在此雷诺数下,高高宽比与低宽高比之间在横向稳定性方面的差异提出了一种可能的解释,即为什么MAV容易产生横向不稳定性,因为其机翼固有地受到独特的流动物理学的影响,而更长的常规飞机则无法体验到跨度。

著录项

  • 作者

    Shields, Matt.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号