首页> 外文学位 >Gas-phase, catalytic hydrodeoxygenation of propanoic acid over supported group VIII noble metals.
【24h】

Gas-phase, catalytic hydrodeoxygenation of propanoic acid over supported group VIII noble metals.

机译:在负载的VIII族贵金属上进行丙酸的气相催化加氢脱氧。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores the use of supported group VIII noble metals for the hydrodeoxygenation (HDO) of Propanoic Acid (PAc). The reactions were evaluated in a conventional continuous plug-flow reactor operated between 200-400ºC under atmospheric pressure with concentrations of 1.2% PAc/20%H 2/balance He. The first part of this work consisted on the synthesis, characterization and evaluation of SiO2 supported catalysts (M = Pd, Pt, Rh, Ru, Ni). The activity and kinetics involving the reaction rate orders with respect to PAc and H2 and activation energies were discussed in detail. The reaction activity based on the TOF follows the sequence: Pd > Ru > Pt > Rh > Ni. The reaction over Pd, Pt and Rh catalysts proceeds mainly via decarbonylation (DCN) and decarboxylation (DCX) pathways at each reaction temperature. For Ru and Ni catalysts, while decarbonylation and decarboxylationpathways were predominant at lower temperatures (e.g., 200-250ºC), at higher temperatures (>300 ºC) the formation of diethyl ketone was observed. Additionally, the kinetics of Pd over different supports (carbon, SiO2 and TiO 2) were examined. The activity based on the TOF decreases in the following order: Pd/SiO2 > Pd/TiO2 > Pd/C. The reaction orders in acid and H2 were found to be approximately 0.5 and zero, respectively, regardless of the support. The apparent activation energies studied in a temperature range of 200-240 ºC, were 16.7 +/- 0.6, 19.3 +/- 1.6 and 11.7 +/- 0.7 kcal/mole for Pd/C, Pd/TiO2 and Pd/SiO2 catalysts, respectively.;Secondly, the effects of metal nanoparticle size ranging between 1.9 to 12.4 nm for over Pd/SiO2 under differential conversion catalysts was investigated. The particle sizes were determined by chemisorption (O 2-H2 titration), XRD and STEM. While the catalytic TOF remained constant between 3.0-12.4 nm it decreased by a factor of 2-3 with decreasing particle size down to 1.9 nm. The reaction rate is therefore considered to be largely structure-insensitive over the range studied. The reaction rate orders with respect to PAc (~0.5) and H2 (~0), and the apparent activation energy (~12 Kcal/mole), were found to be the same for both 2.0 and 12.4 nm particle sizes. In contrast, the reaction rate order with respect to PAc (~1.0) and H2 (~0.3) was different for hydrogenation to produce EtCHO. These differences are explained by a change in the rate-determining step for the HDO of propanoic acid.;Furthermore, a deuterium isotopic substitution of PAc to study a kinetic isotope effect (KIE) and elucidate the reaction mechanism was explored. A combined experimental and computational kinetic isotope effect (KIE) study was performed for the catalytic hydrodeoxygenation (HDO) of deuterium-labeled propanoic acid (PAc-2, 2-D2) over Pd catalyst. For the experimental study, the kinetics were measured in a plug flow reactor over a 5 wt% Pd/C catalyst (as described in the first part) under differential conversion. Different experimental KIE values for the high (kH/kD = 1.16 +/- 0.07) and low (kH/kD = 1.62 +/- 0.05) partial pressures of hydrogen were observed.;The catalytic activity and selectivity trend over carbon supported over group VIII noble metals (M = Pt, Rh, Ru, Ir, Ni, Ag, Au and Cu) was also explored. The catalysts exhibited mainly selectivity toward methane and C2 hydrocarbons, showing strong overall preference for decarbonylation (DCN) versus hydrogenation. The catalytic activity at 200ºC in terms of TOF decreased in the sequence Rh≥ Pt > Ir > ~Ru ~Ni, with no measurable activity found for Au, Ag, and Cu. A reaction rate order of ~0.5 and 0 with respect to PAc and H2, respectively, was found for all catalyst, except Ni/C. The latter exhibited a reaction rate order roughly of 0.2 and -0.2 with respect to PAc and H2, respectively. Comparison with previous studies on the HDO of PAc over 5wt% Pd/C is reported. (Abstract shortened by UMI.).
机译:本文探讨了负载型族贵金属在丙酸(PAc)加氢脱氧(HDO)中的应用。在常规的连续活塞流反应器中在大气压力下,浓度为1.2%PAc / 20%H 2 /其余为He的情况下,在200-400ºC之间进行操作,评估反应。这项工作的第一部分包括SiO2负载催化剂(M = Pd,Pt,Rh,Ru,Ni)的合成,表征和评估。详细讨论了涉及PAc和H2的反应速率顺序和活化能的活性和动力学。基于TOF的反应活性遵循以下顺序:Pd> Ru> Pt> Rh> Ni。在每种反应温度下,Pd,Pt和Rh催化剂上的反应主要通过脱羰(DCN)和脱羧(DCX)途径进行。对于Ru和Ni催化剂,虽然在较低温度(例如200-250ºC)下脱羰和脱羧途径是主要的,但在较高温度(> 300℃)下却观察到了二乙基酮的形成。此外,还研究了Pd在不同载体(碳,SiO2和TiO 2)上的动力学。基于TOF的活性按以下顺序降低:Pd / SiO2> Pd / TiO2> Pd / C。发现在酸和H 2中的反应级数分别为约0.5和零,而与载体无关。在200-240ºC的温度范围内,对于Pd / C,Pd / TiO2和Pd / SiO2催化剂,表观活化能分别为16.7 +/- 0.6、19.3 +/- 1.6和11.7 +/- 0.7 kcal / mol,其次,研究了在不同转化率催化剂下,Pd / SiO2上金属纳米颗粒尺寸在1.9-12.4 nm之间的影响。粒度通过化学吸附(O 2-H2滴定),XRD和STEM确定。尽管催化TOF在3.0-12.4 nm之间保持恒定,但随着粒径减小到1.9 nm,它降低了2-3倍。因此,在所研究的范围内,反应速率被认为在很大程度上对结构不敏感。发现相对于PAc(〜0.5)和H2(〜0)的反应速率阶数和表观活化能(〜12 Kcal / mole)对于2.0和12.4 nm粒径均相同。相反,对于氢化生成EtCHO,相对于PAc(〜1.0)和H2(〜0.3)的反应速率顺序不同。这些差异可以通过改变丙酸的HDO的速率确定步骤来解释。此外,用PAc进行氘同位素取代以研究动力学同位素效应(KIE)并阐明了反应机理。结合实验和计算动力学同位素效应(KIE)研究了Pd催化剂上氘标记的丙酸(PAc-2,2-D2)的催化加氢脱氧(HDO)。对于实验研究,动力学是在活塞流反应器中在5 wt%Pd / C催化剂(如第一部分中所述)下在差分转化下测量的。观察到高(kH / kD = 1.16 +/- 0.07)和低(kH / kD = 1.62 +/- 0.05)氢气分压的不同实验KIE值;在基团上负载的碳的催化活性和选择性趋势还研究了VIII贵金属(M = Pt,Rh,Ru,Ir,Ni,Ag,Au和Cu)。所述催化剂主要显示出对甲烷和C 2烃的选择性,相对于氢化,显示出对脱羰基(DCN)的强烈总体偏好。以TOF计,在200ºC时的催化活性按Rh≥Pt> Ir>〜Ru〜Ni的顺序降低,没有发现可测量的Au,Ag和Cu的活性。对于除了Ni / C之外的所有催化剂,发现相对于PAc和H 2,反应速率分别为〜0.5和0。后者相对于PAc和H 2分别显示出约0.2和-0.2的反应速率。据报道,与Pc超过5wt%Pd / C的HDO的研究比较。 (摘要由UMI缩短。)。

著录项

  • 作者

    Lugo Jose, Yuliana K.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号