首页> 外文学位 >Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts.
【24h】

Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts.

机译:具有非晶半导体触点的高纯度锗辐射探测器的制造工艺开发。

获取原文
获取原文并翻译 | 示例

摘要

High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation.;A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors.;However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include minimizing charge injection leakage current, increasing the long-term stability of the contacts, and achieving good charge collection properties in segmented detectors.;A systematic study of contact characteristics is presented where amorphous germanium (a-Ge) and amorphous silicon (a-Si) contacts are sputtered with varying sputter gas hydrogen content, sputter gas pressure, and amorphous film thickness. A set of about 45 detectors fabricated from 11 different crystal samples were analyzed for electron barrier height and effective Richardson constant. Most of these detectors were subjected to as many as 10 temperature cycles over a period of up to several months in order to assess their long-term stability. Additionally, 6 double-sided strip detectors were fabricated with a-Ge and a-Si contacts in order to study their inter-electrode charge collection properties. An attempt is made to relate fabrication process parameters such as hydrogen content, sputter pressure, and film thickness to changes observed in detector performance and assess the level of reproducibility using the current methods.;Several important results and conclusions were found that enable more reliable and highly performing detectors with amorphous semiconductor contacts. Utilizing the new information should enable consistent production of finely segmented detectors with excellent energy resolution that can be operated reliably for a long period of time. The passivation process could impact planar detectors as well as other designs, such as the p-type point contact detector. It is demonstrated that the long-term stability of amorphous semiconductor contacts is primarily dependent on the time the detector is at room temperature rather than the number of temperature cycles. For a-Ge contacts, higher sputter pressure yields a more stable process that changes little with time, giving a reliable hole-blocking contact. The a-Si contacts form a good electron-blocking contact with decreasing leakage current over time. Both materials, when 7% hydrogen is included in the argon sputter gas, show acceptable levels of inter-electrode charge collection to be useful for strip electrode detectors.
机译:高纯锗(HPGe)辐射探测器已被确立为核科学,天体物理学和核安全应用中的宝贵工具。 HPGe探测器在伽马射线光谱学上表现出色,具有大尺寸探测器尺寸,可提供出色的能量分辨率,从而具有较高的辐射探测效率。尽管已经开发出了健壮的制造工艺,但仍需要改进,特别是在开发用于位置敏感探测器的电接触和表面钝化技术方面。需要进行系统的研究,以了解探测器的制造过程如何影响探测器的性能和可靠性。为了提供位置灵敏度,将电触点分段以形成多个电极。这种分割在制造过程中提出了新的挑战,并需要考虑与分割有关的其他检测器效应。;一个关键的发展领域是创建电触点,以实现可靠的操作,提供低的电子噪声并允许精细的操作。电极的分段,为检测器中的辐射相互作用提供位置敏感性。通过提供薄的高电阻率表面涂层,非晶半导体触点具有很大的潜力来促进新的HPGe检测器设计,这是阻挡电子和空穴并易于细分的电触点的基础。另外,非晶半导体涂层形成合适的钝化层以保护HPGe晶体表面免受污染。这种多功能性使全钝化,细分的探测器的制造工艺变得简单。但是,具有非晶半导体的探测器的制造工艺却没有传统技术那么先进。非晶半导体层的特性可能会因其创建方式而有很大不同,并且这些特性会转化为具有这些触点的HPGe检测器的不同性能。一些关键的挑战包括最小化电荷注入泄漏电流,增加触点的长期稳定性以及在分段检测器中实现良好的电荷收集性能。提出了对非晶锗和非晶硅接触特性的系统研究(a-Si)触点的溅射气体氢含量,溅射气体压力和非晶态膜厚度都不同。分析了由11种不同晶体样品制成的一组约45个检测器的电子势垒高度和有效Richardson常数。为了评估它们的长期稳定性,大多数这些探测器在长达数月的时间内经受了多达10个温度循环。此外,还制作了6个带有a-Ge和a-Si触点的双面带状探测器,以研究其电极间电荷收集特性。尝试将制造工艺参数(例如氢含量,溅射压力和膜厚)与检测器性能中观察到的变化相关联,并使用当前方法评估可再现性水平。具有非晶半导体触点的高性能检测器。利用新信息,应能够稳定生产具有出色能量分辨率的细分检测器,并且可以长时间可靠运行。钝化过程可能会影响平面探测器以及其他设计,例如p型点接触探测器。结果表明,非晶半导体触点的长期稳定性主要取决于探测器在室温下的时间,而不是温度循环的次数。对于a-Ge触点,较高的溅射压力可产生更稳定的过程,该过程随时间变化很小,从而提供可靠的空穴阻挡触点。 a-Si接触形成良好的电子阻挡接触,随着时间的流逝,漏电流减小。当氩气溅射气体中包含7%的氢气时,这两种材料均显示出可接受的电极间电荷收集水平,可用于带状电极检测器。

著录项

  • 作者

    Looker, Quinn.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号