首页> 外文学位 >Molecular dynamics simulation studies of tailored nanostructured polymers.
【24h】

Molecular dynamics simulation studies of tailored nanostructured polymers.

机译:量身定制的纳米结构聚合物的分子动力学模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

With recent advancements in the synthesis and characterization of polymeric materials, scientists are able to create multi-scale novel polymers with various cases of chemical functionalities, diversified topologies, as well as cross-linking networks. Due to those remarkable achievements, there are a broad range of possible applications of smart polymers in catalysis, in environmental remediation, and especially in drug-delivery. Because of rising interest in developing therapeutic drug binding to specific treating target, polymer chemists are in particular interests in design and engineering the drug delivery materials to be not only bio-compatible, but also to be capable of self-assembly at various in-vivo physiological stimulus. Both experimental and theoretical work indicate that the thermodynamic properties relating to the hydrophobic effect play an important role in determining self-assembly process. At the same time, computational simulation and modeling are powerful instruments to contribute to microscopic thermodynamics' understanding toward self-assembly phenomenon. Along with statistical approaches, constructing empirical model based on simulation results would also help predict for further development of tailored nano-structured materials.;My Research mainly focused on investigating physical and chemical characteristics of polymer materials through molecular dynamics simulation and probing the fundamental thermodynamic driving force of self-assembly behavior. We tried to surmount technological obstacles in computational chemistry and build an efficient scheme to identify the physical and chemical Feature of molecules, to reproduce underlying properties, to understand the origin of thermodynamic signatures, and to speed up current trial and error process in screening new materials.
机译:随着聚合材料合成和表征方面的最新进展,科学家们能够创建具有各种化学功能,多样化拓扑结构和交联网络的多尺度新型聚合物。由于这些非凡的成就,智能聚合物在催化,环境修复,尤其是药物传递中具有广泛的应用前景。由于开发与特定治疗靶标结合的治疗药物的兴趣日益浓厚,高分子化学家尤其对药物传递材料的设计和工程设计感兴趣,使其不仅具有生物相容性,而且还能够在各种体内自组装生理刺激。实验和理论工作均表明,与疏水作用有关的热力学性质在确定自组装过程中起着重要作用。同时,计算仿真和建模是强大的工具,有助于微观热力学对自组装现象的理解。与统计方法一起,基于模拟结果构建经验模型也将有助于预测定制纳米结构材料的进一步发展。;我的研究主要致力于通过分子动力学模拟研究高分子材料的物理和化学特性,并探索基本的热力学驱动力。自组装行为的力量。我们试图克服计算化学中的技术障碍,并建立一个有效的方案来识别分子的物理和化学特征,重现其基本特性,了解热力学特征的起源并加快筛选新材料的当前试验和错误过程。 。

著录项

  • 作者

    Liu, Lixin.;

  • 作者单位

    Tulane University School of Science and Engineering.;

  • 授予单位 Tulane University School of Science and Engineering.;
  • 学科 Engineering Chemical.;Nanotechnology.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

  • 入库时间 2022-08-17 11:54:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号