首页> 外文学位 >Intrinsically disordered proteins in molecular recognition and structural proteomics.
【24h】

Intrinsically disordered proteins in molecular recognition and structural proteomics.

机译:分子识别和结构蛋白质组学中固有的无序蛋白。

获取原文
获取原文并翻译 | 示例

摘要

Intrinsically disordered proteins (IDPs) are abundant in nature, being more prevalent in the proteomes of eukaryotes than those of bacteria or archaea. As introduced in Chapter I, these proteins, or portions of these proteins, lack stable equilibrium structures and instead have dynamic conformations that vary over time and population. Despite the lack of preformed structure, IDPs carry out many and varied molecular functions and participate in vital biological pathways. In particular, IDPs play important roles in cellular signaling that is, in part, enabled by the ability of IDPs to mediate molecular recognition. In Chapter II, the role of intrinsic disorder in molecular recognition is examined through two example IDPs: p53 and 14-3-3. The p53 protein uses intrinsically disordered regions at its N- and C-termini to interact with a large number of partners, often using the same residues. The 14-3-3 protein is a structured domain that uses the same binding site to recognize multiple intrinsically disordered partners. Examination of the structural details of these interactions highlights the importance of intrinsic disorder and induced fit in molecular recognition. More generally, many intrinsically disordered regions that mediate interactions share similar features that are identifiable from protein sequence. Chapter IV reviews several models of IDP mediated protein-protein interactions that use completely different parameterizations. Each model has its relative strengths in identifying novel interaction regions, and all suggest that IDP mediated interactions are common in nature. In addition to the biologic importance of IDPs, they are also practically important in the structural study of proteins. The presence of intrinsic disordered regions can inhibit crystallization and solution NMR studies of otherwise well-structured proteins. This problem is compounded in the context of high throughput structure determination. In Chapter III, the effect of IDPs on structure determination by X-ray crystallography is examined. It is found that protein crystals are intolerant of intrinsic disorder by examining existing crystal structures from the PDB. A retrospective analysis of Protein Structure Initiative data indicates that prediction of intrinsic disorder may be useful in the prioritization and improvement of targets for structure determination.
机译:本质上无序的蛋白质(IDP)本质上很丰富,在真核生物的蛋白质组中比细菌或古细菌的蛋白质组更普遍。如第一章所述,这些蛋白质或这些蛋白质的一部分缺乏稳定的平衡结构,而是具有随时间和种群变化的动态构象。尽管缺乏预先形成的结构,IDP仍具有许多不同的分子功能,并参与重要的生物学途径。特别地,IDP在细胞信号传导中起重要作用,这部分是由于IDP介导分子识别的能力所致。在第二章中,通过两个示例IDP(p53和14-3-3)检查了内在障碍在分子识别中的作用。 p53蛋白在其N和C末端使用内在无序的区域与大量配偶体相互作用,通常使用相同的残基。 14-3-3蛋白是一个结构域,使用相同的结合位点识别多个内在无序的伴侣。对这些相互作用的结构细节的检验突出了内在无序和诱导适合分子识别的重要性。更一般地,许多介导相互作用的内在无序区域具有相似的特征,这些特征可从蛋白质序列中鉴定出来。第四章回顾了使用完全不同的参数化的IDP介导的蛋白质-蛋白质相互作用的几种模型。每个模型在识别新颖的相互作用区域方面都有其相对的优势,并且都表明IDP介导的相互作用是自然界中常见的。除了IDP的生物学重要性外,它们在蛋白质的结构研究中也很重要。内在无序区域的存在会抑制其他结构良好的蛋白质的结晶和溶液NMR研究。在确定高吞吐量结构的情况下,此问题更加复杂。在第三章中,研究了IDP对X射线晶体学确定结构的影响。通过检查来自PDB的现有晶体结构,发现蛋白质晶体不耐受内在失调。蛋白质结构倡议数据的回顾性分析表明,内在失调的预测可能对确定结构目标的优先级和改进很有用。

著录项

  • 作者

    Oldfield, Christopher John.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号