首页> 外文学位 >Studies of the molecular mechanism and signaling regulation of autophagy in Saccharomyces cerevisiae.
【24h】

Studies of the molecular mechanism and signaling regulation of autophagy in Saccharomyces cerevisiae.

机译:酿酒酵母中自噬的分子机理和信号转导调控研究。

获取原文
获取原文并翻译 | 示例

摘要

Autophagy is a highly conserved cellular degradation process in which portions of cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and eventual recycling of the resulting macromolecules. Malfunction of autophagy has been linked to a wide range of human pathologies, including cancer, neurodegeneration and pathogen infection. Identification of many autophagy-related, ATG, genes in yeast that are essential to drive this cellular process, and the finding of orthologs in other organisms, reveals the conservation of the autophagic machinery in all eukaryotes. In addition to this, complex signaling cascades controlling autophagy have also begun to emerge, with TOR as a central but far from exclusive player. In this thesis, (1) we summarize our current knowledge about the machinery and molecular mechanism of autophagy. (2) We highlight the recent advances in identifying and understanding the core molecular machinery and signaling pathways that are involved in mammalian autophagy. (3) We elucidate a molecular mechanism for linking the degradative and recycling roles of autophagy. We show that in contrast to published studies Atg22 is not directly required for the breakdown of autophagic bodies within the lysosome/vacuole. Instead, we demonstrate that Atg22, Avt3 and Avt4 are redundant vacuolar effluxers, which mediate the efflux of leucine and other amino acids resulting from autophagic degradation. The release of autophagic amino acids allows the maintenance of protein synthesis and viability during nitrogen starvation. We propose a "recycling" model that includes the efflux of macromolecules from the lysosome/vacuole as the final step of autophagy. (4) We used genetic analyses to elucidate the mechanism by which the stress-responsive, cyclin-dependent kinase, Pho85 and its corresponding cyclins antagonistically modulate autophagy in Saccharomyces cerevisiae . When complexed with cyclins Pho80 and Pc15, Pho85 negatively regulates autophagy through downregulating the protein kinase Rim15, and the transcription factors Pho4 and Gcn4. The cyclins Clg1, Pcl1 and Pho80, in concert with Pho85, positively regulate autophagy through promoting the degradation of Sic1, a negative regulator of autophagy that targets Rim15. Our results suggest a model in which Pho85 has opposing roles in autophagy regulation.
机译:自噬是一种高度保守的细胞降解过程,其中部分胞浆和细胞器被隔离成双膜囊泡(自噬体),并传递到降解细胞器(液泡/溶酶体)中,以分解并最终回收所产生的大分子。自噬功能异常与多种人类疾病有关,包括癌症,神经变性和病原体感染。酵母中许多自噬相关的ATG基因的鉴定是驱动该细胞过程必不可少的,其他生物中直向同源物的发现揭示了所有真核生物中自噬机制的保守性。除此之外,控制自噬的复杂信号级联也开始出现,以TOR为中心,但远非独占者。在本文中,(1)我们总结了有关自噬机制和分子机制的现有知识。 (2)我们着重指出最近在识别和了解哺乳动物自噬中涉及的核心分子机制和信号传导途径方面的进展。 (3)我们阐明了连接自噬的降解和循环作用的分子机制。我们显示,与已发表的研究相反,溶酶体/真空中自噬体的分解并不直接需要Atg22。相反,我们证明Atg22,Avt3和Avt4是多余的液泡流出物,它们介导自噬降解引起的亮氨酸和其他氨基酸的流出。自噬氨基酸的释放可以在氮饥饿期间维持蛋白质合成和活力。我们提出了一个“回收”模型,其中包括溶酶体/真空中大分子的流出作为自噬的最后一步。 (4)我们使用遗传分析阐明了应激反应,细胞周期蛋白依赖性激酶Pho85及其相应的细胞周期蛋白拮抗调节酿酒酵母中自噬的机制。当与细胞周期蛋白Pho80和Pc15复合时,Pho85通过下调蛋白激酶Rim15和转录因子Pho4和Gcn4负调控自噬。细胞周期蛋白Clg1,Pcl1和Pho80与Pho85协同作用,通过促进Sic1的降解来积极调节自噬,Sic1是靶向Rim15的自噬的负调节剂。我们的结果提出了一种模型,其中Pho85在自噬调节中具有相反的作用。

著录项

  • 作者

    Yang, Zhifen.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Cell.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号