首页> 外文学位 >Translational Imaging of Pulmonary Gas-Exchange Using Hyperpolarized 129Xe Magnetic Resonance Imaging.
【24h】

Translational Imaging of Pulmonary Gas-Exchange Using Hyperpolarized 129Xe Magnetic Resonance Imaging.

机译:使用超极化129Xe磁共振成像对肺部气体交换进行平移成像。

获取原文
获取原文并翻译 | 示例

摘要

The diagnosis and treatment of pulmonary diseases still rely on pulmonary function tests that offer archaic or insensitive biomarkers of lung structure and function. As a consequence, chronic obstructive pulmonary disease is the third leading cause of death in the US, and the hospitalization costs for asthma are on the order of ;While a bulk of the inhaled HP 129Xe stays in the alveolar spaces, its moderate solubility in the pulmonary tissues causes a small fraction of this xenon in the alveolar spaces to diffuse into the pulmonary barrier tissue and plasma, and further into the red blood cells (RBC). Additionally, when in either of these compartments, xenon experiences a unique shift in its resonance frequency from the gas-phase (barrier - 198 ppm, RBC - 217 ppm). These unique resonances are collectively called the dissolved-phase of xenon. As the pathway taken by xenon to reach the RBCs is identical to that of oxygen, this dissolved-phase offers a non-invasive probe to study the oxygen transfer pathway, and imaging its distribution, to first order, would give us an image of gas-exchange in the lung.;Gas-exchange is controlled by ventilation, perfusion, and lastly diffusion of gases across the capillary membrane. This process of diffusion is dictated by Fick's first law of diffusion, and hence the volume of gas taken up by the capillary blood stream depends on the alveolar surface area, and the interstitial thickness. Interestingly, changes in these factors can be measured using the resonances of xenon. Changes in the alveolar surface area brought on by diseases like emphysema will increase the diffusion of xenon within the alveolus. Thus, by using diffusion-weighted imaging of the gas-phase of 129Xe, which is the focus of chapter 3, one can extract the 'apparent diffusion coefficient' (ADC) of xenon, that is sensitive to the changes in the alveolar surface area. The dissolved-phase on the other hand, while sensitive to the surface area, is also sensitive to subtle changes in the interstitial thickness. In fact, after the application of an RF pulse on the dissolved-phase, the recovery time for the xenon signal in the RBCs is significantly delayed by micron scale thickening of the interstitium. This delayed signal recovery can be used as a sensitive marker for diffusion impairment in the lung.;While direct imaging of the dissolved-phase was shown to be feasible, truly quantifying gas-exchange in the lung will require two additional technical advances - 1) As the gas-phase is the source magnetization for the dissolved-phase signal, it is imperative to acquire both the gas and dissolved-phase images in a single breath. The technical details of this achievement are discussed in chapters 4 and 5. 2) As the dissolved-phase consists of both the barrier and the RBC components, obtaining a fundamental image of gas-exchange in the lung will require creating independent images of 129Xe in the barrier and 129Xe in the RBCs. This goal first required creating a global metric of gas-transfer in the lung (chapter 6), which aided the implementation of the 1-point Dixon acquisition strategy to separate the components of the dissolved-phase. In conjunction with aim 1, it was finally possible to image all three resonances of 129Xe in a single breath (chapter 7). These 129Xe-RBC images were acquired in healthy volunteers and their efficacy was tested in subjects with idiopathic pulmonary fibrosis (IPF). These IPF subjects are known for their characteristic diffusion limitation, and in regions of fibrosis shown on their CT scans, the 129Xe-RBC images showed gas-transfer defects. Hyperpolarized 129Xe MRI thus provides a non-invasive, ionizing radiation free method to probe ventilation, microstructural changes and most importantly, gas-exchange. These preliminary results indicate that xenon MRI has potential as a sensitive tool in therapeutic clinical trials to evaluate longitudinal changes in lung function.
机译:肺部疾病的诊断和治疗仍然依赖于肺功能测试,该测试可提供有关肺结构和功能的古老或不敏感的生物标记。结果,慢性阻塞性肺疾病是美国的第三大死亡原因,哮喘的住院费用约为;虽然吸入的大部分HP 129Xe保留在肺泡腔中,但其在肺泡中的溶解度中等肺组织使肺泡空间中的一小部分氙扩散到肺屏障组织和血浆中,并进一步扩散到红细胞(RBC)中。此外,当在这些隔室中的任何一个中时,氙气的共振频率都会相对于气相发生独特的变化(阻挡层-198 ppm,RBC-217 ppm)。这些独特的共振统称为氙的溶解相。由于氙气到达红细胞的途径与氧气相同,因此该溶解相提供了一种非侵入性的探针来研究氧气的转移途径,并对其分布进行一阶成像,可以为我们提供气体图像。气体交换受通气,灌注和气体最后通过毛细管膜的扩散控制。扩散过程由菲克的第一扩散定律决定,因此,毛细血管血流吸收的气体量取决于肺泡表面积和间质厚度。有趣的是,可以使用氙气的共振来测量这些因素的变化。由肺气肿等疾病引起的肺泡表面积变化将增加氙在肺泡内的扩散。因此,通过使用第三章重点研究的129Xe气相扩散加权成像,可以提取对肺泡表面积变化敏感的氙的“表观扩散系数”(ADC)。 。另一方面,固溶相虽然对表面积敏感,但对间隙厚度的细微变化也敏感。实际上,在溶解相上施加RF脉冲后,间质层的微米级增厚大大延迟了RBC中氙信号的恢复时间。这种延迟的信号恢复可以用作肺中弥散损害的敏感标志物。;虽然已证明对溶解相进行直接成像是可行的,但要真正量化肺中的气体交换,还需要两项其他技术改进-1)由于气相是溶解相信号的源磁化强度,因此必须在一次呼吸中同时获取气相和溶解相图像。在第4章和第5章中讨论了这一成就的技术细节。2)由于溶解相包括屏障和RBC组分,因此要获得肺中气体交换的基本图像,将需要创建129Xe的独立图像。 RBC中的障碍和129Xe。这个目标首先需要创建一个在肺中气体转移的全局度量(第6章),这有助于实施1-point Dixon采集策略以分离溶解相的组成部分。结合目标1,最终有可能在一次呼吸中成像129Xe的所有三个共振(第7章)。这些129Xe-RBC图像是在健康志愿者中获得的,其功效在患有特发性肺纤维化(IPF)的受试者中进行了测试。这些IPF受试者因其特征性的扩散限制而闻名,在其CT扫描显示的纤维化区域中,129Xe-RBC图像显示出气体转移缺陷。因此,超极化129Xe MRI提供了一种无创,无电离辐射的方法来探测通气,微结构变化,最重要的是气体交换。这些初步结果表明,氙气MRI在治疗性临床试验中有潜力作为评估肺功能纵向变化的敏感工具。

著录项

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biomedical engineering.;Medical imaging.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号