首页> 外文学位 >Parallelism and Epistasis in the de novo Evolution of Cooperation Between Two Species.
【24h】

Parallelism and Epistasis in the de novo Evolution of Cooperation Between Two Species.

机译:两种物种合作从头进化的平行性和上位性。

获取原文
获取原文并翻译 | 示例

摘要

Resolving the genetic and mechanistic bases of complex biological behaviors remains a central challenge in the post-genomic era. Among these is the emergence of interspecies cooperation, a feature common across levels of biological organization. Of the numerous examples afforded by nature, microbes arguably provide the greatest ability to connect underlying genotypes to cooperative phenotypes.;Using an engineered bacterial consortium, we repeatedly evolved cooperation and tested how interspecies dynamics impact the predictability of evolution. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymous mutations in metA, encoding homoserine trans-succinylase, were detected in each evolved S. enterica methionine cooperator, and were shown to be necessary for cooperative consortia growth. Despite this genetic parallelism, these metA alleles gave rise to a wide range of phenotypic diversity in terms of individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet interestingly also had the slowest individual growth rates compared to less cooperative strains.;The two-step selective protocol used to evolve these cooperators, however, raised questions about historical contingency, which is believed to play a large role in shaping evolution. Without initial selection for resistance to end-product transcriptional inhibition, S. enterica struggled to evolve cooperation. Selection for resistance to a toxic methionine analog, ethionine, enabled more efficient evolution of cooperation by S. enterica in a process that required two adaptive mutations. When bacteria must overcome multiple levels of metabolic repression to excrete costly compounds, gene interactions like epistasis may limit adaptive strategies. In this consortium, epistasis between metJ and metA adaptive mutations suggests microbes undergoing de novo evolution of cooperation face similar challenges.;Knowing how previous selective pressures and interspecies dynamics impact adaptive variation at the genetic, phenotypic, and ecological levels will better constrain our ability to predict complex microbial community behavior from the genotypes or phenotypes of the strains within them.
机译:解决复杂生物行为的遗传和机理基础仍然是后基因组时代的主要挑战。其中包括种间合作的出现,这是跨生物组织各个层次的共同特征。在自然界提供的众多例子中,微生物可以说是提供了最大的能力,可以将潜在的基因型与协作表型联系起来。使用工程菌群,我们反复地发展了合作关系,并测试了种间动力学如何影响进化的可预测性。八株肠炎沙门氏菌血清型鼠伤寒沙门氏菌进化出的蛋氨酸排泄足以支持大肠杆菌蛋氨酸营养缺陷型的生长,从中需要排泄的生长底物。在每个进化的肠炎沙门氏蛋氨酸合作者中检测到编码高丝氨酸反琥珀酸酶的metA中的非同义突变,被证明是合作社发展所必需的。尽管存在这种遗传上的平行性,但这些metA等位基因仍在个体与群体利益方面产生了广泛的表型多样性。蛋氨酸排泄量最高的合作者使菌落的生长快了将近两倍,并支持了最高的大肠杆菌含量,但有趣的是,与不那么合作的菌株相比,个体的生长速度也最慢。然而,这些合作者提出了关于历史偶然性的问题,人们认为历史偶然性在塑造进化过程中起着重要作用。没有针对最终产物转录抑制的抗性的最初选择,肠炎沙门氏菌努力发展合作。选择对有毒蛋氨酸类似物乙硫氨酸的抗性,可以使肠炎链球菌在需要两个适应性突变的过程中更有效地进化合作。当细菌必须克服代谢抑制的多个水平以排泄昂贵的化合物时,基因相互作用如上位性可能会限制适应策略。在这个财团中,metJ和metA适应性突变之间的上位性表明经历合作的从头进化的微生物面临着类似的挑战。;了解先前的选择压力和种间动力学如何影响遗传,表型和生态水平的适应性变异将更好地限制我们的能力从其中菌株的基因型或表型预测复杂的微生物群落行为。

著录项

  • 作者

    Douglas, Sarah Michael.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biology Evolution and Development.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号