首页> 外文学位 >Quantitative Poly-energetic Reconstruction Schemes for Single Spectrum CT Scanners.
【24h】

Quantitative Poly-energetic Reconstruction Schemes for Single Spectrum CT Scanners.

机译:单光谱CT扫描仪的定量多能重建方案。

获取原文
获取原文并翻译 | 示例

摘要

X-ray computed tomography (CT) is a non-destructive medical imaging technique for assessing the cross-sectional images of an object in terms of attenuation. As it is designed based on the physical processes involved in the x-ray and matter interactions, faithfully modeling the physics in the reconstruction procedure can yield accurate attenuation distribution of the scanned object. Otherwise, unrealistic physical assumptions can result in unwanted artifacts in reconstructed images. For example, the current reconstruction algorithms assume the photons emitted by the x-ray source are mono-energetic. This oversimplified physical model neglects the poly-energetic properties of the x-ray source and the nonlinear attenuations of the scanned materials, and results in the well-known beam-hardening artifacts (BHAs). The purpose of this work was to incorporate the poly-energetic nature of the x-ray spectrum and then to eliminate BHAs. By accomplishing this, I can improve the image quality, enable the quantitative reconstruction ability of the single-spectrum CT scanner, and potentially reduce unnecessary radiation dose to patients.;In this thesis, in order to obtain accurate spectrum for poly-energetic reconstruction, I first presented a novel spectral estimation technique, with which spectra across a large range of angular trajectories of the imaging field of view can be estimated with a single phantom and a single axial acquisition. The experimental results with a 16 cm diameter cylindrical phantom (composition: ultra-high-molecular-weight polyethylene [UHMWPE]) on a clinical scanner showed that the averaged absolute mean energy differences and the normalized root mean square differences with respect to the actual spectra across kVp settings (i.e., 80, 100, 120, 140) and angular trajectories were less than 0.61 keV and 3.41%, respectively.;With the previous estimation of the x-ray spectra, three poly-energetic reconstruction algorithms are proposed for different clinical applications. The first algorithm (i.e., poly-energetic iterative FBP [piFBP]) can be applied to routine clinical CT exams, as the spectra of the x-ray source and the nonlinear attenuations of diverse body tissues and metal implant materials are incorporated to eliminate BHAs and to reduce metal artifacts. The simulation results showed that the variation range of the relative errors of various tissues across different phantom sizes (i.e., 16, 24, 32, and 40 cm in diameter) and kVp settings (80, 100, 120, 140) were reduced from [-7.5%, 17.5%] for conventional FBP to [-0.1%, 0.1%] for piFBP, while the noise was maintained at the same low level (about [0.3%, 1.7%]).;When iodinated contrast agents are involved and patient motions are not readily correctable (e.g., in myocardial perfusion exam), a second algorithm (i.e., poly-energetic simultaneous algebraic reconstruction technique [pSART]) can be applied to eliminate BHAs and to quantitatively determine the iodine concentrations of blood-iodine mixtures with our new technique. The phantom experiment on a clinical CT scanner indicated that the maximum absolute relative error across material inserts was reduced from 4.1% for conventional simultaneous algebraic reconstruction technique [SART] to 0.4% for pSART.;Extending the work beyond minimizing BHAs, if patient motions are correctable or negligible, a third algorithm (i.e., poly-energetic dynamic perfusion algorithm [pDP]) is developed to retrieve iodine maps of any iodine-tissue mixtures in any perfusion exams, such as breast, lung, or brain perfusion exams. The quantitative results of the simulations with a dynamic anthropomorphic thorax phantom indicated that the maximum error of iodine concentrations can be reduced from 1.1 mg/cc for conventional FBP to less than 0.1 mg/cc for pDP.
机译:X射线计算机断层扫描(CT)是一种无损医学成像技术,用于根据衰减评估对象的横截面图像。由于它是基于X射线和物质相互作用中涉及的物理过程而设计的,因此在重建过程中如实地对物理模型进行建模可以产生扫描对象的精确衰减分布。否则,不切实际的物理假设可能会导致重建图像中出现不必要的伪影。例如,当前的重建算法假设X射线源发出的光子是单能量的。这种过于简化的物理模型忽略了X射线源的多能特性和扫描材料的​​非线性衰减,并导致了众所周知的光束硬化伪像(BHA)。这项工作的目的是结合X射线光谱的多能性质,然后消除BHA。通过这样做,我可以提高图像质量,实现单光谱CT扫描仪的定量重建能力,并有可能减少对患者的不必要辐射剂量。本论文为了获得准确的多能重建光谱,我首先提出了一种新颖的光谱估计技术,利用该技术可以使用单个幻像和单个轴向采集来估计成像视场的大范围角轨迹上的光谱。在临床扫描仪上使用直径为16 cm的圆柱体模(成分:超高分子量聚乙烯[UHMWPE])进行的实验结果表明,相对于实际光谱的平均绝对平均能量差和归一化均方根差在kVp设置(即80、100、120、140)范围内,角轨迹分别小于0.61 keV和3.41%.;在对X射线光谱进行先前估计的基础上,针对不同的情况提出了三种多能重构算法临床应用。第一种算法(即多能迭代FBP [piFBP])可以应用于常规的临床CT检查,因为结合了X射线源的光谱以及各种人体组织和金属植入物材料的非线性衰减来消除BHA并减少金属制品。仿真结果表明,不同模型在不同体模尺寸(即直径16、24、32和40 cm)和kVp设置(80、100、120、140)下相对误差的变化范围从[常规FBP为-7.5%,17.5%],piFBP为[-0.1%,0.1%],同时噪声保持在相同的低水平(约[0.3%,1.7%])。并且患者的动作不容易纠正(例如,在心肌灌注检查中),可以应用第二种算法(即多能同时代数重建技术[pSART])消除BHA并定量确定血碘的碘浓度与我们的新技术混合。在临床CT扫描仪上进行的幻像实验表明,跨材料插入物的最大绝对相对误差已从常规同时代数重建技术[SART]的4.1%降低到pSART的0.4%。可校正的或可忽略的,开发了第三种算法(即多能动态灌注算法[pDP]),以在任何灌注检查(如乳房,肺或脑灌注检查)中检索任何碘组织混合物的碘图。动态拟人化的胸部模型的模拟定量结果表明,碘浓度的最大误差可以从传统FBP的1.1 mg / cc降低到pDP的小于0.1 mg / cc。

著录项

  • 作者

    Lin, Yuan.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Physics Optics.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号