首页> 外文学位 >Model Predictive Control for Autonomous and Semiautonomous Vehicles.
【24h】

Model Predictive Control for Autonomous and Semiautonomous Vehicles.

机译:自主和半自主车辆的模型预测控制。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we consider the problem of designing and implementing Model Predictive Controllers (MPC) for lane keeping and obstacle avoidance of autonomous or semi-autonomous ground vehicles.;We start from comparing two different MPC based control architectures. With a given trajectory representing the driver intent, the controller has to autonomously avoid obstacles on the road while trying to track the desired trajectory by controlling front steering angle and differential braking. The first approach solves a single nonlinear MPC problem for both replanning and following of the obstacle free trajectories. While the second approach uses a hierarchical scheme. At the high-level, new trajectories are computed on-line, in a receding horizon fashion, based on a simplified point-mass vehicle model in order to avoid the obstacle. At the low-level an MPC controller computes the vehicle inputs in order to best follow the high level trajectory based on a higher fidelity nonlinear vehicle model. Experimental results of both approaches on icy roads are shown. The experimental as well as simulation results are used to compare the two approaches. We conclude that the hierarchical approach is more promising for real-time implementation and yields better performance due to its ability of having longer prediction horizon and faster sampling time at the same time.;Based on the hierarchical approach for autonomous drive, we propose a hierarchical MPC framework for semi-autonomous obstacle avoidance, which decides the necessity of control intervention based on the aggressiveness of the evasive maneuver necessary to avoid collisions. The high level path planner plans obstacle avoiding maneuvers using a special kind of curve, the clothoid. The usage of clothoids have a long history in highway design and robotics control. By optimizing over a small number of parameters, the optimal clothoids satisfying the safety constraints can be determined. The same parameters also indicate the aggressiveness of the avoiding maneuver and thus can be used to decide whether a control intervention is needed before its too late to avoid the obstacle. In the case of control intervention, the low level MPC with a nonlinear vehicle model will follow the planned avoiding maneuver by taking over control of the steering and braking. The controller is validated by both simulations and experimental tests on an icy track.;In the proposed autonomous hierarchical MPC where the point mass vehicle model is used for high level path replanning, despite of its successful avoidance of the obstacle, the controller's performance can be largely improved. In the test, we observed deviations of the actual vehicle trajectory from the high level planned path. This is because the point mass model is overly simplified and results in planned paths that are infeasible for the real vehicle to track. To address this problem, we propose an improved hierarchical MPC framework based on a special coordinate transformation in the high level MPC. The high level uses a nonlinear bicycle vehicle model and utilizes a coordinate transformation which uses vehicle position along a path as the independent variable. That produces high level planned paths with smaller tracking error for the real vehicle while maintaining real-time feasibility. The low level still uses an MPC with higher fidelity model to track the planned path. Simulations show the method's ability to safely avoid multiple obstacles while tracking the lane centerline. Experimental tests on an autonomous passenger vehicle driving at high speed on an icy track show the effectiveness of the approach.;In the last part, we propose a robust control framework which systematically handles the system uncertainties, including the model mismatch, state estimation error, external disturbances and etc. The framework enforces robust constraint satisfaction under the presence of the aforementioned uncertainties. The actual system is modeled by a nominal system with an additive disturbance term which includes all the uncertainties. A "Tube-MPC" approach is used, where a robust control invariant set is used to contain all the possible tracking errors of the real system to the planned path (called the "nominal path"). Thus all the possible actual state trajectories in time lie in a tube centered at the nominal path. A nominal NMPC controls the tube center to ensure constraint satisfaction for the whole tube. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. The robust invariant set of the error system (nominal system vs. real system) is computed based on the developed model, the associated uncertainties and a predefined disturbance feedback gain. The computed invariant set is used to tighten the constraints in the nominal NMPC to ensure robust constraint satisfaction. Simulations and experiments on a test vehicle show the effectiveness of the proposed framework. (Abstract shortened by UMI.).
机译:本文考虑了设计和实现用于自动或半自动地面车辆的车道保持和避障的模型预测控制器(MPC)的问题。我们从比较两种不同的基于MPC的控制架构开始。在代表驾驶员意图的给定轨迹的情况下,控制器必须通过控制前转向角和差速制动来自动避开道路上的障碍物,同时尝试跟踪所需轨迹。第一种方法解决了针对无障碍轨迹的重新规划和跟踪的单个非线性MPC问题。而第二种方法使用分层方案。在高层,基于简化的点质量车辆模型,以后退的方式在线计算新轨迹,以避免障碍。在低级别,MPC控制器基于较高保真度的非线性车辆模型来计算车辆输入,以便最佳地遵循高级别轨迹。显示了两种方法在结冰的道路上的实验结果。实验和仿真结果用于比较这两种方法。我们得出的结论是,分层方法由于具有更长的预测范围和更快的采样时间的能力而在实时实现方面更有希望,并且产生更好的性能。;基于自动驾驶的分层方法,我们提出了一种分层方法MPC用于半自动避障的框架,该框架基于避免碰撞所必需的规避机动性的侵略性,决定了控制干预的必要性。高级路径规划器使用特殊类型的回旋曲线来规划避障操作。回旋曲线的使用在高速公路设计和机器人控制方面历史悠久。通过优化少量参数,可以确定满足安全约束的最佳回旋曲线。相同的参数还表明了避免操作的积极性,因此可以用来确定是否需要控制干预,以免为时过晚而避免障碍。在控制干预的情况下,具有非线性车辆模型的低级MPC将通过接管转向和制动的控制来遵循计划的回避操作。在冰冷的轨道上,通过仿真和实验测试对控制器进行了验证;在拟议的自主式MPC中,尽管将点质量车辆模型用于高级路径重新规划,尽管成功避开了障碍物,但控制器的性能仍可以大大改善。在测试中,我们观察到实际车辆轨迹与高级别计划路径的偏差。这是因为点质量模型过分简化,导致计划的路径对于实际车辆无法跟踪。为了解决这个问题,我们提出了一种改进的层次化MPC框架,该框架基于高级MPC中的特殊坐标转换。高级别使用非线性自行车模型,并利用坐标转换,该坐标转换使用沿路径的车辆位置作为自变量。这样就产生了对实际车辆具有较小跟踪误差的高级计划路径,同时又保持了实时可行性。低层级仍使用具有较高保真度的MPC模型来跟踪计划的路径。仿真表明,该方法能够在跟踪车道中心线时安全避开多个障碍物。在冰冷的轨道上高速行驶的自动驾驶乘用车上的实验测试证明了该方法的有效性。最后,我们提出了一种鲁棒的控制框架,该框架系统地处理了系统不确定性,包括模型不匹配,状态估计误差,在存在上述不确定性的情况下,该框架可以强制实施严格的约束条件。实际系统由具有附加扰动项的标称系统建模,该扰动项包括所有不确定性。使用“ Tube-MPC”方法,其中使用鲁棒的控制不变集来包含实际系统到计划路径(称为“标称路径”)的所有可能的跟踪误差。因此,时间上所有可能的实际状态轨迹都位于以标称路径为中心的管中。标称NMPC控制管中心以确保整个管的约束满足。开发了一种力输入非线性自行车模型,并将其用于RNMPC控制设计中。基于已开发的模型,相关的不确定性和预定义的干扰反馈增益,可以计算出误差系统的鲁棒不变集(标称系统与实际系统)。计算出的不变集用于收紧名义NMPC中的约束,以确保稳健的约束满足。在测试车辆上的仿真和实验证明了所提出框架的有效性。 (摘要由UMI缩短。)。

著录项

  • 作者

    Gao, Yiqi.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号