首页> 外文学位 >Computational study of a high-temperature thermal nanoimprint lithographic (TNIL) process.
【24h】

Computational study of a high-temperature thermal nanoimprint lithographic (TNIL) process.

机译:高温热纳米压印光刻(TNIL)工艺的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

As an emerging manufacturing technique, nanoimprint lithography (NIL) can fabricate micro and nanoscale features of microfluidic devices at very high accuracy and reliability. The process parameters such as pressure, temperature, and material properties play critical roles in the NIL process. In this work, the process of thermal nanoimprint lithography (TNIL) is studied computationally and the developed model can accurately predict the nano and micro-pattern geometry and quality from TNIL processes based on complex mold-resist interaction. Applications of this modeling technique range from micro- and nano-patterns used in micro-channels for biomedical devices to other applications such as biological/particle sensors or superhydrophobic surfaces.;In high-temperature TNIL process, a polymer melt such as polymethyl-methacrylate (PMMA) is heated beyond the melting temperature so that it behaves predominantly as a fluid during the imprint process. The effects of surface tension and shear thinning become significant at or above the melting point, whereas the polymer melt can be modeled as a viscoelastic solid, solved with finite element analysis, when process temperature remains between the glass transition and melting temperatures. Additionally, the mold used in TNIL can deform since it is made of soft-rubbery elastomer such as polydimethylsiloxane (PDMS), and it is of interest to include the effect of subsequent mold deformation. Leakage between channels or significant variation in channel width can occur in micro-fluidic devices if mold deformation exceeds design tolerances. In the current work, fluid-structure interaction (FSI) technology is leveraged to solve for significant mold deformation and its effect on the polymer melt flow field during TNIL process. The simulation result is compared to experimental results. The FSI simulation result is also compared to the equivalent case with a rigid mold in place of flexible material, which shows results of differing mold materials.
机译:作为一种新兴的制造技术,纳米压印光刻(NIL)可以以非常高的准确性和可靠性制造微流控设备的微米和纳米级特征。压力,温度和材料特性等工艺参数在NIL工艺中起着至关重要的作用。在这项工作中,对热纳米压印光刻(TNIL)的过程进行了计算研究,开发的模型可以基于复杂的防霉相互作用从TNIL过程准确预测纳米和微图案的几何形状和质量。这种建模技术的应用范围从生物医学设备微通道中使用的微图案和纳米图案到生物/颗粒传感器或超疏水表面等其他应用。在高温TNIL工艺中,聚合物熔体例如聚甲基丙烯酸甲酯(PMMA)的加热温度超过熔化温度,因此在压印过程中其主要表现为流体。在温度或熔点以上,表面张力和剪切稀化的影响变得显着,而当工艺温度保持在玻璃化转变温度和熔融温度之间时,可以将聚合物熔体建模为粘弹性固体,并通过有限元分析来解决。此外,TNIL中使用的模具可能会变形,因为它是由诸如聚二甲基硅氧烷(PDMS)之类的软橡胶弹性体制成的,并且感兴趣的是包括随后模具变形的影响。如果模具变形超过设计公差,则在微流体装置中可能会发生通道间泄漏或通道宽度显着变化。在当前的工作中,利用流体-结构相互作用(FSI)技术解决了TNIL过程中显着的模具变形及其对聚合物熔体流场的影响。将模拟结果与实验结果进行比较。 FSI模拟结果也与刚性模具代替柔性材料的等效情况进行了比较,显示了不同模具材料的结果。

著录项

  • 作者

    Cleveland, Nicolas Joseph.;

  • 作者单位

    University of Massachusetts Lowell.;

  • 授予单位 University of Massachusetts Lowell.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Engineering General.
  • 学位 M.S.
  • 年度 2014
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号