首页> 外文学位 >First-principles-based kinetic modeling of the zeolite-catalyzed conversion of furans to aromatics.
【24h】

First-principles-based kinetic modeling of the zeolite-catalyzed conversion of furans to aromatics.

机译:基于第一原理的动力学模型对沸石催化的呋喃向芳烃的转化。

获取原文
获取原文并翻译 | 示例

摘要

The development of strategies to convert renewable feedstocks into fuels and chemicals and displace petroleum is motivated from economic, environmental and political reasons and is arguably one of the world's foremost scientific energy challenges. The nascent shale gas revolution may, at best, postpone the transition to renewables. Shale gas, however, does not provide aromatics to the extent that naphtha does and thus the development of renewables-based strategies for aromatics is more crucial than ever.;A promising, sustainable route to synthesize aromatics from biomass-derived furans has recently been proposed following the discovery that DMF and ethylene can be selectively converted to p-xylene by dehydration of the Diels-Alder product over zeolites that contain Bronsted sites. The objective of this thesis is to reveal the underlying mechanism and provide insights into catalyst design principles. In order to achieve this, we combine electronic structure calculations and microkinetic modeling to describe how the two reactions - Diels-Alder cycloaddition and dehydration - work in tandem and to investigate the side reactions that affect selectivity. Specifically, we study the Bronsted acid-catalyzed dehydration of the cycloadduct and the ring opening hydrolysis reaction of DMF. We show that Bronsted acids are quite effective at catalyzing dehydration and hydrolysis. We pay particular attention to the ability of zeolites with extra-framework Lewis acid centers to heterogeneously catalyze the Diels-Alder cycloaddition. We elucidate the factors that determine Lewis acid activity and propose reactivity descriptors that encapsulate the underlying physics. In order to accomplish this study, we vary the active Lewis acid site environment from an isolated active site center to an active site cluster model and an embedded active site cluster model to determine the balance between accuracy and computational cost and guide future computational studies about a suitable way of modeling the active site. Even though Lewis acids are known to catalyze Diels-Alder cycloaddition by closing the gap between the frontier molecular orbitals of the addends, our calculations show that alkali-exchanged zeolites Y do not generally exhibit notable Lewis acid activity. Charge screening of the Lewis acid centers, due to significant charge transfer from the framework oxygen atoms to the alkali cations, diminishes their catalytic ability. As a result, the reaction is shown to follow bi-directional instead of normal electron flow and homogeneous catalyzed chemistry is equally effective. We propose that effective heterogeneous catalysis of Diels-Alder cycloaddition should involve zeolite frameworks whereby the Lewis acid centers are less embedded and thus less screened from electron density transfer from the framework.;Microkinetic modeling of the conversion of DMF and ethylene over the zeolite HY revealed that HY can only catalyze the dehydration of the Diels-Alder product and that the cycloaddition itself proceeds uncatalyzed, outside the zeolite, i.e., homogeneously. The overall process follows two distinct kinetic regimes as a function of catalyst concentration. At low catalyst loadings, the rate of p-xylene production increases linearly with the concentration of active sites and the rate-limiting step is the Bronsted-catalyzed dehydration. At high catalyst loadings, the reaction rate is maximal and independent of the available Bronsted sites. In this regime, the rate is controlled by the uncatalyzed cycloaddition, despite the fact that the cycloaddition activation energy is higher than that of the catalyzed dehydration..
机译:出于经济,环境和政治原因,制定将可再生原料转化为燃料和化学制品并替代石油的策略是世界上最重要的科学能源挑战之一。新生的页岩气革命最多只能推迟向可再生能源的过渡。然而,页岩气不能提供石脑油所能提供的芳烃,因此,以可再生能源为基础的芳烃战略的发展比以往任何时候都更为关键。最近,提出了一种有前途的,可持续的途径,可从生物质衍生的呋喃中合成芳烃在发现通过在含有布朗斯台德位点的沸石上使Diels-Alder产品脱水,DMF和乙烯可以选择性地转化为对二甲苯之后。本文的目的是揭示潜在的机理并提供对催化剂设计原理的见解。为了实现这一目标,我们将电子结构计算和微动力学建模相结合,以描述Diels-Alder环加成反应和脱水这两个反应如何协同工作,并研究影响选择性的副反应。具体而言,我们研究了环加合物的布朗斯台德酸催化脱水和DMF的开环水解反应。我们显示布朗斯台德酸在催化脱水和水解方面非常有效。我们特别注意具有超构架路易斯酸中心的沸石异质催化Diels-Alder环加成反应的能力。我们阐明了决定路易斯酸活性的因素,并提出了封装基础物理的反应性描述子。为了完成这项研究,我们将主动Lewis酸性位点环境从孤立的活性位点中心改为活性位点簇模型和嵌入式活性位点簇模型,以确定准确性和计算成本之间的平衡,并指导有关对活动站点进行建模的合适方法。尽管已知路易斯酸通过闭合加成物前沿分子轨道之间的间隙来催化Diels-Alder环加成反应,但我们的计算表明碱交换的沸石Y通常不表现出显着的路易斯酸活性。由于从骨架氧原子到碱性阳离子的大量电荷转移,路易斯酸中心的电荷筛选降低了它们的催化能力。结果,显示该反应遵循双向而不是正常的电子流,并且均相催化化学同样有效。我们认为Diels-Alder环加成反应的有效多相催化应涉及沸石骨架,从而使路易斯酸中心的嵌入程度降低,从而减少了从骨架中电子密度转移的筛选。;揭示了DMF和乙烯在HY沸石上的转化的微动力学模型HY只能催化Diels-Alder产物的脱水,并且环加成反应本身在沸石外部(即均匀地)未经催化地进行。整个过程遵循两个不同的动力学机制,作为催化剂浓度的函数。在低催化剂负载下,对二甲苯的生成速率随活性位点的浓度线性增加,并且限速步骤是布朗斯台德催化的脱水。在高催化剂负载量下,反应速率最大且与可用的布朗斯台德位点无关。在这种情况下,速率受未催化的环加成反应控制,尽管事实上,环加成反应的活化能高于催化的脱水能。

著录项

  • 作者

    Nikbin, Nima.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Chemical.;Chemistry Organic.
  • 学位 D.Eng.
  • 年度 2014
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号