...
首页> 外文期刊>ACS catalysis >First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface
【24h】

First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface

机译:基于第一原理的阶梯式铑表面上合成气转化的微动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The kinetics of synthesis gas conversion on the stepped Rh(211) surface were investigated by computational methods. DFT calculations were performed to determine the reaction energetics for all elementary reaction steps relevant to the conversion of CO into methane, ethylene, ethane, formaldehyde, methanol, acetaldehyde, and ethanol. Micro-kinetics simulations were carried out on the basis of these first-principles data to predict the CO consumption rate and the product distribution as a function of temperature. The elementary reaction steps that control the CO consumption rate and the selectivity were analyzed in detail. Ethanol formation can only occur on the stepped surface, because the barrier for CO dissociation on Rh terraces is too high; step-edges are also required for the coupling reactions. The model predicts that formaldehyde is the dominant product at low temperature, ethanol at intermediate temperature, and methane at high temperature. The preference for ethanol over long hydrocarbon formation is due to the lower barrier for C(H) + CO coupling as compared with the barriers for CHx + CHy coupling reactions. The C(H)CO surface intermediate is hydrogenated to ethanol via a sequence of hydrogenation and dehydrogenation reactions. The simulations show that ethanol formation competes with methane formation at intermediate temperatures. The rate-controlling steps are CO removal as CO2 to create empty sites for the dehydrogenation steps in the reaction sequence leading to ethanol, CHxCHyO hydrogenation for ethanol formation, and CH2 and CH3 hydrogenation for methane formation. CO dissociation does not control the overall reaction rate on Rh. The most important reaction steps that control the selectivity of ethanol over methane are CH2 and CH3 hydrogenation as well as CHCH3 dehydrogenation.
机译:通过计算方法研究了阶梯状Rh(211)表面上合成气转化的动力学。进行DFT计算以确定与CO转化为甲烷,乙烯,乙烷,甲醛,甲醇,乙醛和乙醇有关的所有基本反应步骤的反应能。在这些第一性原理数据的基础上进行了微动力学模拟,以预测CO消耗率和产物分布随温度的变化。详细分析了控制CO消耗速率和选择性的基本反应步骤。乙醇的形成只能在阶梯状表面上发生,因为Rh台阶上CO分解的障碍太高。偶联反应也需要台阶边缘。该模型预测甲醛在低温下是主要产物,在中间温度下是乙醇,在高温下是甲烷。与长烃形成相比,乙醇的优先选择是由于与CHx + CHy偶联反应的壁垒相比,C(H)+ CO的壁垒较低。通过一系列氢化和脱氢反应,将C(H)CO表面中间体氢化为乙醇。模拟表明,在中间温度下,乙醇的形成与甲烷的形成竞争。速率控制步骤是将CO脱除为CO2,从而在导致乙醇的反应顺序中为脱氢步骤创建空位,为形成乙醇生成CHxCHyO氢化,为形成甲烷生成CH2和CH3氢化。 CO解离不能控制在Rh上的总反应速率。控制乙醇对甲烷的选择性的最重要的反应步骤是CH2和CH3氢化以及CHCH3脱氢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号