首页> 外文学位 >Stringent specificity in the construction of a presynaptic inhibitory circuit.
【24h】

Stringent specificity in the construction of a presynaptic inhibitory circuit.

机译:突触前抑制电路构建中的严格特异性。

获取原文
获取原文并翻译 | 示例

摘要

To explore the mechanisms that promote functional circuit formation in the CNS, I have focused on the inhibitory network regulating reflex responses in the spinal cord. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic intemeurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. To understand the emergence of these distinct functional circuits. I have asked if the targeting of neurons that function in presynaptic and postsynaptic inhibition is genetically determined or opportunistic. Furthermore, what are the discrete molecular signals provided by the postsynaptic neuron that orchestrate specificity in connectivity, allowing for presynaptic differentiation at appropriate sites of contact between neural partners?;Inhibitory synapses that function in presynaptic inhibition are formed on the terminals of sensory afferents. These synapses are morphologically and molecularly distinct from the postsynaptically targeting synapses, in that they are small and selectively express the GABA synthetic enzyme, GAD65. These distinctions suggest that the neurons that form synapses with sensory afferent terminals are genetically distinct from postsynaptic inhibitory neurons. To establish the relationship between neural identity and connectivity of these inhibitory synapses, I have taken advantage of studies that have shown several neural domains, defined by the unique expression of transcription factors, give rise to inhibitory neurons in the spinal cord.;One method to establish the importance of the postsynaptic target in directing selectivity in synapse formation is to precisely remove distinct target neurons and assess the connectivity of the presynaptic neuron. I have examined stringency of synapse formation in the spinal cord by assessing the cellular contribution of the post synaptic target of the GABAergic neurons targeting sensory afferent terminals. By selectively removing sensory afferent terminals from the ventral spinal cord, I have show that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is critically dependent on their targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. These findings suggest that the organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is controlled by a stringent program of sensory recognition and signaling. What are the molecular signals provided by the sensory terminals that function in directing the selectivity of targeting and differentiation of these GABAergic interneurons?;To explore the molecular identity of signals provided by the sensory afferent terminal that direct recognition and differentiation of presynaptically targeted GABAergic neurons, I have identified factors selectively expressed by sensory neurons that may provide a signal for target recognition and presynaptic differentiation. One adhesion molecule, selectively expressed by sensory neurons, is the Contactin family member NB-2. The fidelity of specificity of GABAergic interneurons targeting sensory afferent terminals requires NB-2, as mice lacking this protein exhibit a reduction in the number of inhibitory terminals on a sensory afferent terminal, along with the emergence of ectopie synapses. Furthermore, I have identified a retrograde signaling molecule, selectively expressed by sensory afferent terminals, that is necessary for aspects of synaptic differentiation of GAB Aergic synapses. I have shown that the presynaptic differentiation of GABAergic synapses on sensory terminals depends on a sensory-specific source of brain derived neurotrophic factor that induces synaptic expression of GAD65--a defining biochemical feature of this set of interneurons.
机译:为了探索促进中枢神经系统功能电路形成的机制,我集中研究了调节脊髓反射反应的抑制网络。在脊髓中,感觉信号向运动神经元的传递被GABA能性内胚层过滤,后者在突触前起到抑制感觉递质释放的作用,而在突触后则抑制运动神经元的兴奋性。了解这些独特功能电路的出现。我问过在突触前和突触后抑制中发挥作用的神经元的靶向作用是否是遗传决定的或机会性的。此外,由突触后神经元提供的离散分子信号是什么,这些信号能够协调连接的特异性,从而在神经伴侣之间的适当接触部位实现突触前的分化?在感觉传入末端形成在突触前抑制中起作用的抑制性突触。这些突触在形态和分子上与突触后靶向突触不同,因为它们很小并且选择性表达GABA合成酶GAD65。这些区别表明与感觉传入末端形成突触的神经元在遗传上与突触后抑制性神经元不同。为了建立神经身份与这些抑制性突触的连通性之间的关系,我利用了一些研究,这些研究表明,由转录因子的独特表达所定义的几个神经域会在脊髓中产生抑制性神经元。建立突触后靶标在指导突触形成选择性中的重要性是要精确去除独特的靶标神经元并评估突触前神经元的连通性。我已经通过评估靶向感觉传入终端的GABA能神经元的突触后靶标的细胞贡献来检查脊髓中突触形成的严格性。通过选择性地从腹侧脊髓去除感觉传入末端,我已经表明,介导突触前抑制的GABA能中间神经元的连通性和突触分化主要取决于其靶标。在缺乏感觉末梢的情况下,这些GABA能神经元会避开其他可用靶标,无法进行突触前分化,并从腹侧脊髓撤回轴突。这些发现表明,在哺乳动物CNS中介导突触前抑制的GABA能回路的组织受严格的感觉识别和信号传递程序控制。由感觉末端提供的分子信号在指导这些GABA能神经元的靶向和分化的选择性中起什么作用;探索由感觉传入末端提供的信号的分子身份,这些信号直接对突触前靶向的GABA能神经元进行识别和分化,我已经确定了由感觉神经元选择性表达的因子,这些因子可能为靶标识别和突触前分化提供信号。 Contactin家族成员NB-2是由感觉神经元选择性表达的一种粘附分子。靶向感觉传入末端的GABA能中间神经元的保真度需要NB-2,因为缺乏这种蛋白的小鼠表现出感觉传入末端抑制性末端数量的减少,以及异位突触的出现。此外,我已经鉴定出由感觉传入末端选择性表达的逆行信号分子,这对于GAB能氧突触的突触分化方面是必需的。我已经证明,GABA能突触在感觉末端的突触前分化取决于诱导GAD65突触表达的脑源性神经营养因子的感觉特异性来源,这是这组中间神经元的生化特征。

著录项

  • 作者

    Betley, J. Nicholas.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号