首页> 外文学位 >A new hierarchical multiscale optimization method: Gradient and non-gradient approaches for waterflooding optimization.
【24h】

A new hierarchical multiscale optimization method: Gradient and non-gradient approaches for waterflooding optimization.

机译:一种新的分层多尺度优化方法:用于水驱优化的梯度和非梯度方法。

获取原文
获取原文并翻译 | 示例

摘要

This work proposes new optimization techniques, either gradient-based or derivative-free, to improve the performance of the production optimization step in the closed-loop reservoir management framework in terms of computational cost and the ultimate objective function result. The concept of closed-loop reservoir management has been largely applied in the reservoir engineering literature for the last decade. Composed of two main steps, data assimilation and optimal well control, closed-loop reservoir management seeks to attain optimum decisions on how to develop a field, considering the best knowledge of the reservoir's uncertainty. Although both steps in closed-loop reservoir management are important, this work focuses on techniques to solve the life-cycle production optimization problem.;Typically, methods based on the gradient of the objective function are more efficient in terms of both the computational cost and the ultimate objective function value. However, the limited capability for computing gradients in commercial reservoir simulators and the difficulty in implementation of adjoint codes lead to a growing interest in optimization algorithms which do not require accurate gradient information. Thus, we propose a method based on function models that vaguely mimic Newton's method, but since neither the gradient nor the Hessian of the objective function are available, a quadratic interpolation model is built from a set of interpolation points and then minimized using a trust region method. Our methodology is inspired by the ideas underlying the New Unconstrained Optimization Algorithm NEWUOA proposed by Powell [88] and extends the algorithm of Zhao et al. [122]. We propose and implement features to control and maintain the quality of the geometric aspect of the interpolation set and the quadratic model, which are neglected in the work of Zhao et al. [122]. We also derive a methodology which does not use any gradient approximation but still is based on a quadratic interpolation model and, unlike NEWUOA, improves the objective function from the first iteration onwards. Our methodology has been tested with success for two problems: the well-known Rosenbrock test function and a synthetic channelized reservoir.;Life-cycle optimization problems present two key aspects related to the dimensionality of a production optimization problem and the practical preference for temporal smoothness in the controls at each well. In this work, we propose to tackle both aspects, dimensionality and smoothness, by using new multiscale techniques. We propose a multiscale estimation technique for adaptively selecting the lengths of control steps as the overall optimization proceeds, without necessarily requiring correlation between well controls to provide smoothness. The well controls can be coarsened or refined, which allows the method to automatically defines the appropriated level of refinement. Two refining strategies are implemented: first, the controls are evenly split into a predetermined number of new controls; secondly, we refine based on the so-called refinement indicators, as presented by Chavent and Bissell [21], Ben Ameur et al. [11], and Lien et al. [68].In addition, our proposed methods can be applied to either gradient-based or derivative-free methods.;We have successively applied our multiscale techniques to synthetic reservoir problems and to a real field case and compared against other approaches presented in the literature, considering problems with only bounds on well controls, or, in addition to the bound constraints, we also consider linear inequality constraints. Our multiscale technique based on the refinement indicators has also been successfully applied to production optimization problems under geological uncertainty for two problems with an ensemble-based representation of the uncertainty where the expected value of the net present value is maximized.
机译:这项工作提出了基于梯度的或无导数的新的优化技术,以在计算成本和最终目标函数结果方面提高闭环油藏管理框架中生产优化步骤的性能。在过去的十年中,闭环油藏管理的概念已在油藏工程文献中得到广泛应用。闭环储层管理由数据吸收和最佳井控两个主要步骤组成,它考虑了对储层不确定性的最佳认识,力求在如何开发油田方面获得最佳决策。尽管闭环水库管理中的两个步骤都很重要,但这项工作的重点是解决生命周期生产优化问题的技术。通常,基于目标函数梯度的方法在计算成本和成本方面都更加有效。最终目标函数值。然而,在商业储层模拟器中计算梯度的能力有限以及实现伴随代码的困难导致对不需要精确梯度信息的优化算法的兴趣日益增长。因此,我们提出了一种基于函数模型的方法,该方法模糊地模仿了牛顿法,但是由于既没有目标函数的梯度也没有Hessian,因此根据一组插值点构建二次插值模型,然后使用信任区域将其最小化。方法。我们的方法是受鲍威尔[88]提出的新无约束优化算法NEWUOA的思想启发,并扩展了Zhao等人的算法。 [122]。我们提出并实现了一些特征,以控制和维持插值集和二次模型的几何方面的质量,而这些特征在Zhao等人的工作中被忽略了。 [122]。我们还推导了一种方法,该方法不使用任何梯度近似,但仍基于二次插值模型,并且与NEWUOA不同,它从第一次迭代开始就改进了目标函数。我们的方法论已经针对两个问题进行了成功的测试:著名的Rosenbrock测试函数和合成通道化油藏。生命周期优化问题提出了与生产优化问题的维数和时间平滑度的实际偏好相关的两个关键方面在每个孔的控件中。在这项工作中,我们建议通过使用新的多尺度技术来处理尺寸和平滑度这两个方面。我们提出了一种多尺度估计技术,用于随着整体优化的进行而自适应地选择控制步骤的长度,而不必要求井控之间的相关性以提供平滑度。可以对井孔控制进行粗化或细化,从而允许该方法自动定义适当的细化水平。实施了两种改进策略:首先,将控件平均分成预定数量的新控件;其次,我们根据Chavent和Bissell [21],Ben Ameur等人提出的所谓的细化指标进行细化。 [11],和Lien等。 [68]。此外,我们提出的方法可以应用于基于梯度的方法或无导数的方法。;我们已经将多尺度技术相继应用于合成油藏问题和实际案例,并与本文中提出的其他方法进行了比较。文献中,仅考虑井控问题的边界问题,或者除了边界约束之外,我们还考虑线性不等式约束。我们基于细化指标的多尺度技术也已成功地应用于地质不确定性下的两个问题的生产优化问题,其中两个问题是基于集合的不确定性的组合,其中净现值的期望值已最大化。

著录项

  • 作者单位

    The University of Tulsa.;

  • 授予单位 The University of Tulsa.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 324 p.
  • 总页数 324
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号