首页> 外文学位 >Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films.
【24h】

Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films.

机译:纳米级热电学:薄膜的绝对塞贝克系数研究。

获取原文
获取原文并翻译 | 示例

摘要

The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, which depends on the Seebeck coefficient and electrical and thermal conductivity. These characteristic material parameters have interdependent energy transport contributions that classically prohibit the optimization of one with out the detriment of another. Encouraging advancements of ZT have occurred in the past ten years due to the decoupling of the thermal and electrical conductivity. Further advancements are necessary in order to produce applicable devices. One auspicious way of decoupling or tuning energy transport properties, is through size reduction to the nanoscale. However, with reduced dimensions come complications in measuring material properties. Measurements of properties such as the Seebeck coefficient, S, are primarily contingent upon the measurement apparatus. The Seebeck coefficient is defined as the amount of voltage generated by a thermal gradient. Measuring a thermally generated voltage by traditional methods gives, the voltage measured as a linear function of the Seebeck coefficient of the leads and of the material being tested divided by the applied thermal gradient. If accurate values of the Seebeck coefficients of the leads are available, simple subtraction provides the answer. This is rarely the case in nanoscale measurement devices with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly measure, S, as a function of temperature using a micro-machined thermal isolation platform consisting of a suspended, patterned SiN membrane. By measuring a series of thicknesses of metallic films up to the infinitely thin film limit, in which the electrical resistivity is no longer decreasing with increasing film thickness, but still not at bulk values, along with the effective electron mean free path, we are able to show the contribution of the leads needed to measure this property. Having a comprehensive understanding of the background contribution we are able to determine the absolute Seebeck coefficient of a wide variety of thin films. The nature of the design of the SiN membrane also allows the ability to accurately and directly measure thermal and electrical transport of the thin films yielding a comprehensive measurement of the three quantities that characterize a material's efficiency. This can serve to further the development of thermoelectric materials through precise measurements of the material properties that dictate efficiency.
机译:世界对能源的需求不断增长。同样,由于通过化石燃料燃烧产生能量而引起的气候变化对环境的影响也越来越令人震惊。由于这些因素,不断寻求新的可再生能源。热电设备具有利用余热产生清洁,可再生能源的能力。然而,有希望的是,它们的无效性严重抑制了适用性和实际使用。热电材料的实用性随无量纲量ZT的增加而增加,ZT取决于塞贝克系数以及电导率和导热率。这些特征材料参数具有相互依存的能量传输贡献,这些贡献经典地禁止在不损害另一种的情况下优化一种。在过去的十年中,由于热导率和电导率的去耦,ZT取得了令人鼓舞的进步。为了生产适用的设备,需要进一步的发展。解耦或调整能量传输特性的一种吉祥方式是减小尺寸到纳米级。然而,随着尺寸的减小,在测量材料特性方面变得复杂。诸如塞贝克系数S之类的属性的测量主要取决于测量设备。塞贝克系数定义为由热梯度产生的电压量。用传统方法测量热产生的电压,得出的电压是引线和被测材料的塞贝克系数的线性函数,再除以所施加的热梯度。如果引线的塞贝克系数的准确值可用,则简单的减法即可提供答案。在具有仅由薄膜材料制成的引线的纳米级测量设备中很少出现这种情况,而引线材料没有众所周知的类似体积的热功率值。我们已经开发出一种技术,可以使用由悬浮的图案化SiN膜组成的微加工热隔离平台直接测量S作为温度的函数。通过测量直至无限薄膜极限的一系列金属膜厚度,其中电阻率不再随膜厚度的增加而降低,但仍未达到整体值,并且有效电子平均自由程也得以实现以显示测量此属性所需的线索的贡献。通过对背景贡献的全面了解,我们能够确定各种薄膜的绝对塞贝克系数。 SiN膜的设计性质还使得能够准确而直接地测量薄膜的热和电传递,从而能够全面测量出表征材料效率的三个量。通过精确测量决定效率的材料特性,可以进一步促进热电材料的开发。

著录项

  • 作者

    Mason, Sarah J.;

  • 作者单位

    University of Denver.;

  • 授予单位 University of Denver.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号