首页> 外文学位 >Design and implementation of microfluidic systems for bacterial biofilm monitoring and manipulation.
【24h】

Design and implementation of microfluidic systems for bacterial biofilm monitoring and manipulation.

机译:用于细菌生物膜监测和处理的微流体系统的设计和实现。

获取原文
获取原文并翻译 | 示例

摘要

Bacterial biofilms -- pathogenic matrices formed through bacterial communication and subsequent extracellular matrix secretion -- characterize the majority of clinical bacterial infections. Biofilms exhibit increased resistance to conventional antibiotics, necessitating development of alternative treatments. Standard microbiological methods for studying biofilms often rely on in vitro systems with involved instrumentation for biofilm quantification, or destroy the biofilm in the process of characterization. Additionally, biofilm formation is sensitive to many growth parameters, and can exhibit a large degree of variability between repeated experiments. This dissertation presents the development of systems designed to address these challenges through integration of continuous biofilm monitoring in a microfluidic platform, and through creation of a microfluidic platform for multiple assays performed on one biofilm formed in a single channel. The microsystems developed in this work provide building blocks for developing controlled, high throughput testbeds for development and evaluation of drugs targeting bacterial biofilms.;The first platform developed relied on optical density monitoring as a means for evaluating biofilm formation. This method was noninvasive, as it used an external light source and array of photodiodes to evaluate biofilms by the amount of light transmitted through the microfluidic channel where they were grown. The optical density biofilm measurement method and microfluidic platform were used to evaluate the dependence of biofilm formation on quorum sensing, an autoinducer-mediated intercellular communication process. This system was also used in the first demonstration of biofilm inhibition and reduction by two different autoinducer-2 analogs.;The second microfluidic system developed addressed the challenge of variability in biofilm formation. Biofilms formed in a single microfluidic channel were partitioned by hydraulically actuated valves into three separate segments, which were then treated as representatives of the original biofilm in further experiments. A novel photoresist passivation process was developed in order to create the multi-depth channels needed to accommodate both valve actuation and biofilm formation. Biofilms grown in the device were uniform throughout, providing reliable experimental controls within the system. Biofilm partitioning was demonstrated by exposing three segments of one biofilm to varying detergent concentrations.
机译:细菌生物膜-通过细菌交流和随后的细胞外基质分泌形成的致病基质-是大多数临床细菌感染的特征。生物膜对常规抗生素的抵抗力增强,因此有必要开发替代疗法。用于研究生物膜的标准微生物方法通常依赖于具有相关仪器的体外系统进行生物膜定量,或在表征过程中破坏生物膜。此外,生物膜的形成对许多生长参数敏感,并且在重复实验之间可能表现出很大的变异性。本论文介绍了旨在解决这些挑战的系统的开发,方法是通过将连续的生物膜监测集成到微流体平台中,以及通过创建用于在单个通道中形成的一个生物膜上进行多种测定的微流体平台来解决这些挑战。在这项工作中开发的微系统为开发受控的高通量试验台提供了基础,以开发和评估针对细菌生物膜的药物。;开发的第一个平台依靠光密​​度监测作为评估生物膜形成的手段。这种方法是非侵入性的,因为它使用外部光源和光电二极管阵列通过通过生物膜生长的微流体通道传输的光量来评估生物膜。使用光密度生物膜测量方法和微流控平台评估生物膜形成对群体感应(自动诱导剂介导的细胞间通讯过程)的依赖性。该系统还用于两个不同的autoinducer-2类似物对生物膜的抑制和还原的第一个演示中。第二个开发的微流体系统解决了生物膜形成可变性的挑战。在单个微流体通道中形成的生物膜被液压驱动的阀划分为三个独立的部分,然后在进一步的实验中将其视为原始生物膜的代表。为了创建适应阀驱动和生物膜形成所需的多深度通道,开发了一种新颖的光致抗蚀剂钝化工艺。在设备中生长的生物膜始终是均匀的,可在系统内提供可靠的实验控制。通过将一个生物膜的三个部分暴露于变化的去污剂浓度来证明生物膜的分配。

著录项

  • 作者

    Meyer, Mariana Tsacoumis.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号