首页> 外文学位 >Pyrolysis and Combustion Kinetics of Biomass-Related Compounds.
【24h】

Pyrolysis and Combustion Kinetics of Biomass-Related Compounds.

机译:生物质相关化合物的热解和燃烧动力学。

获取原文
获取原文并翻译 | 示例

摘要

Detailed reaction pathways and kinetics have been developed for pyrolysis of biomass-related compounds such as beta-D-glucose (beta-D-glucopyranose), glycolaldehyde, glyceraldehyde, dihydroxyacetone, methanol, isopropanol, and propanal and for combustion of tetrahydrofuran (THF) and tetrahydropyran (THP). The purpose is to establish kinetics for reactor design and operations of bio-oil production and use.;Understanding glucose pyrolysis proves to be a key window into understanding cellulose pyrolysis. In the absence of ions from solvation or mineral salts, concerted reactions are shown to be dominant, notably including a new insight that molecular catalysis occurs through OH groups as in H2O, other glucose molecules, and most of the intermediates and products. Sanders et al. (J. Anal. Appl. Pyrolysis, 2003) had proposed a detailed but qualitative set of reaction steps for glucose pyrolysis. In the present work, transition states, elementary-reaction pathways, and rate coefficients are calculated for pyrolysis of beta-Dglucose (the monomer of cellulose) and related molecules, primarily using the high-level CBS-QB3 method. The result is quantitative, and elementary-reaction network that supports many features proposed by Sanders et al. while altering and adding others, including the competition between unimolecular reactions and OH-catalyzed reactions. Reactions for ring-opening and formation, retro-aldol condensation, keto-enol tautomerization, and dehydration are included. The dehydration reactions are focused on bicyclic ring formations that lead to levoglucosan and 1,6-beta-D-anhydrousglucofuranose. The bimolecular OH-assisted reactions are found to have lower activation energies compared to the unimolecular reactions. The levoglucosan-formation reactions should occur analogously for amorphous cellulose forming cello-n-san (e.g., cellotriosan) plus a shortened cellulose chain, a hypothesis supported by the very similar activation energies computed when alternate groups are substituted at the C1 glycosidic oxygen.;Second, to understand the role of different alcohol groups in glucose in the formation of levoglucosan, a parametric study has been performed by replacing alcohol groups at C1 and C6 with methyl and amine groups. The results show that the presence of lone-pair electrons in oxygen at C1 plays a key role in the substantial reduction in activation energy for levoglucosan formation. The effect of water molecules as a solvent and catalyst was tested using explicit, implicit (CPCM solvent model), and a combination of explicit and implicit water molecules. For unimolecular reaction, free energy of activation is lowest for glucose in implicit solvent with no explicit water molecules; for bimolecular reaction catalyzed by one water molecule and solvated by another water molecule in implicit solvent.;Third, pyrolysis experiments have been performed on small saccharides and alcohols such as glycolaldehyde, glyceraldehyde, dihydroxyacetone, methanol, and isopropanol. In these pyrolysis experiments, the products indicate that both concerted and free radical pathways may occur in the small-molecule pyrolyses.;Finally, elementary-reaction pathways are modeled and identified in THF and THP flames in order to understand the elementary chemistry of biomass-derived fuel combustion. This work's experiments and modeling of a fuel-rich THP/O2/Ar flame are published separately (Labbe et al., Proc. Comb. Inst., 2013). Modeling low-pressure THF/O2/Ar flat flames at different equivalence ratios by Kasper et al. (Z. Phys. Chem., 2011), the present uses rate coefficients from the literature or computes them using quantum chemistry, reaction theories, and analogy. Flat-flame modeling with CHEMKIN using the new set of kinetics, thermochemistry, and transport properties reveals that hydrogen abstraction from THF was the major fuel consumption pathway, proceeding by beta-scission reaction to form smaller species. Pollutants such as benzene and aldehydes were formed as intermediates in the combustion process. As in the experiment, polyaromatic hydrocarbons were not observed in the products at experimentally detectable levels, even at this fuel-rich condition.
机译:已开发出详细的反应途径和动力学用于生物质相关化合物的热解,例如β-D-葡萄糖(β-D-吡喃葡萄糖),乙醇醛,甘油醛,二羟基丙酮,甲醇,异丙醇和丙醛以及燃烧四氢呋喃(THF)和四氢吡喃(THP)。目的是建立反应器设计以及生物油生产和使用操作的动力学。理解葡萄糖热解证明是理解纤维素热解的关键窗口。在没有来自溶剂化物或无机盐的离子的情况下,协同反应被证明是占主导地位的,特别是包括一个新的见解,即通过H2O,其他葡萄糖分子以及大多数中间体和产物中的OH基发生分子催化。桑德斯等。 (J.Anal.Appl.Pyrolysis,2003)提出了一套详细而定性的葡萄糖热解反应步骤。在当前的工作中,主要使用高级CBS-QB3方法计算β-D葡萄糖(纤维素的单体)和相关分子的热解的过渡态,基本反应途径和速率系数。结果是定量的基本反应网络,该网络支持Sanders等人提出的许多功能。同时更改和添加其他内容,包括单分子反应与OH催化反应之间的竞争。包括开环和形成,逆醛醇缩合,酮-烯醇互变异构和脱水的反应。脱水反应集中在导致左旋葡聚糖和1,6-β-D-无水葡萄糖呋喃糖的双环形成上。与单分子反应相比,发现双分子OH辅助反应具有较低的活化能。左旋葡聚糖形成反应应类似于无定形纤维素形成纤维n-san(例如,cellioriosan)加上缩短的纤维素链发生,这一假说由在C1糖苷氧处替代基团时计算出的非常相似的活化能所支持。其次,为了了解葡萄糖中不同醇基在左旋葡聚糖形成中的作用,已进行了一项参数研究,方法是用甲基和胺基取代C1和C6处的醇基。结果表明,在C1的氧中孤对电子的存在在有效降低左旋葡聚糖形成的活化能中起关键作用。使用显式,隐式(CPCM溶剂模型)以及显式和隐式水分子的组合测试了水分子作为溶剂和催化剂的效果。对于单分子反应,在没有显式水分子的隐式溶剂中,葡萄糖的活化自由能最低。在一个水分子催化并在另一水分子中被另一水分子溶剂化的双分子反应中,在隐性溶剂中。第三,对小分子糖类和醇类(如乙醇醛,甘油醛,二羟基丙酮,甲醇和异丙醇)进行了热解实验。在这些热解实验中,产物表明小分子热解过程中可能同时发生协同和自由基途径。最后,在THF和THP火焰中对基本反应途径进行了建模和鉴定,以了解生物质的基本化学成分。衍生燃料燃烧。这项工作的实验和富燃料THP / O2 / Ar火焰的模型分别发表(Labbe等人,Proc。Comb。Inst。,2013)。 Kasper等人在不同当量比下模拟低压THF / O2 / Ar扁平火焰。 (Z. Phys。Chem。,2011),目前使用文献中的速率系数,或使用量子化学,反应理论和类比来计算它们。使用新的一组动力学,热化学和传输特性,采用CHEMKIN进行平焰建模,结果表明,从THF提取氢是主要的燃料消耗途径,其通过β-断裂反应形成较小的物种。在燃烧过程中形成了诸如苯和醛之类的污染物作为中间体。与实验中一样,即使在这种富含燃料的条件下,也没有在实验可检测的水平上在产品中观察到多芳烃。

著录项

  • 作者

    Seshadri, Vikram.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Chemical engineering.;Physical chemistry.;Molecular chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 425 p.
  • 总页数 425
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号