首页> 外文学位 >The Thermoelectric Properties of Rare Earths as Dopants in InGaAs Films.
【24h】

The Thermoelectric Properties of Rare Earths as Dopants in InGaAs Films.

机译:InGaAs薄膜中稀土作为掺杂剂的热电特性。

获取原文
获取原文并翻译 | 示例

摘要

Current energy technologies lose over half of the energy input to waste heat. Thermoelectric materials can recover some of this waste heat by converting it into electricity. Thermoelectric devices have no moving parts, so they are low noise and highly reliable, making them particularly suitable for extreme environments. A good thermoelectric has low thermal conductivity to maintain large temperature gradients and high electrical conductivity to effectively transport carriers across that temperature gradient. One of the major challenges in engineering such thermoelectrics is effectively decoupling these parameters. These relationships are quantified in the dimensionless thermoelectric figure of merit, ZT, where a ZT of 1 is considered commercially viable.;Doping MBE grown InGaAs films with rare earths forms embedded nanoparticles that have been shown to improve thermoelectric efficiency of InGaAs. Rare earth doping effectively overcomes the problematic relationship between electrical and thermal conductivities. These embedded particles effectively decouple thermal and electrical properties by contributing carriers to increase electrical conductivity as well as forming scattering centers for mid to long wavelength phonons to decrease thermal conductivity. However, the mechanism for carrier generation from rare earths is poorly understood. Comparing different rare earths as dopants in InGaAs, we find a positive correlation with the electrical activation efficiency as the rare earth arsenide nanoparticles are more closely lattice matched to the host matrix. This is in contrast to traditional Si doped InGaAs, which is fully ionized at room temperature. The high doping efficiency of Si leads it to be as good or better of a dopant for thermoelectrics compared to the best rare earths studied. We observe that rare earth doped InGaAs has thermal activation of carriers at high temperature, giving it the potential to be a more efficient thermoelectric in this regime than traditionally doped InGaAs.;A method was developed to determine the thermoelectric efficiency of a material system over a range of conductivities using only a few experimental data points. This allows for more efficient mapping of a material system for thermoelectrics. Using this analysis, high temperature measurements show that carrier scattering from rare earth impurities compensates the enhancement from thermally generated carriers, giving Si the potential to be a better thermoelectric dopant in InGaAs at high temperature. Extrapolating temperature dependent measurements to higher temperatures shows that a ZT greater than 3 should be theoretically possible for Gd or Si doped InGaAs at 700°C.
机译:当前的能源技术浪费了一半以上的能源输入以浪费热量。热电材料可以通过将其转化为电能来回收其中的一部分废热。热电设备没有活动部件,因此噪音低且可靠性高,使其特别适用于极端环境。良好的热电势具有低的热导率以保持较大的温度梯度,而高的电导率可有效地在该温度梯度范围内传输载流子。工程设计此类热电设备的主要挑战之一是有效地解耦这些参数。这些关系在无因次热电因数ZT中得到了量化,其中ZT为1在商业上是可行的。用稀土掺杂MBE生长的InGaAs膜可形成嵌入式纳米颗粒,这些纳米颗粒已被证明可以提高InGaAs的热电效率。稀土掺杂有效地克服了电导率和导热率之间的问题关系。这些嵌入的粒子通过贡献载流子来增加电导率并形成中长波子声子的散射中心来降低热导率,从而有效地将热和电特性解耦。但是,人们对稀土产生载流子的机理了解甚少。将不同的稀土元素作为InGaAs中的掺杂剂进行比较,我们发现,由于稀土砷化物纳米颗粒与主体基质的晶格匹配更紧密,因此与电激活效率呈正相关。这与在室温下完全电离的传统的Si掺杂InGaAs形成对比。与研究的最佳稀土相比,硅的高掺杂效率使其与热电学掺杂剂一样好或更好。我们观察到稀土掺杂的InGaAs在高温下具有载流子的热活化作用,因此在这种情况下它具有比传统掺杂的InGaAs更高效率的热电势的潜力。开发了一种确定材料系统在一定温度下的热电效率的方法电导率范围仅使用几个实验数据点。这样可以更有效地绘制热电材料系统。使用该分析,高温测量结果表明,稀土杂质引起的载流子散射补偿了热生载流子的增强作用,从而使Si成为高温下InGaAs中更好的热电掺杂剂。将温度相关的测量值外推到更高的温度表明,对于700℃下掺Gd或Si的InGaAs,理论上ZT大于3应该是可能的。

著录项

  • 作者

    Koltun, Rachel Ann.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Materials science.;High temperature physics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号