首页> 外文学位 >Synthesis and characterization of novel complex iron oxides with layered and tunnel structures.
【24h】

Synthesis and characterization of novel complex iron oxides with layered and tunnel structures.

机译:具有层状和隧道结构的新型复合氧化铁的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

Novel cathode materials for lithium ion batteries were synthesized via lithium for sodium ion exchange from the known compounds, ss-NaFeO 2 and NaFeTiO4. The resulting lithium analogs of these known sodium compounds, T-LiFeO2 and LiFeTiO4, contain tunnel-like structures that were characterized using Rietveld refinement of Powder X-ray diffraction, electrochemical measurements, Mossbauer spectroscopy, thermogravimetric analysis, and inductively coupled plasma spectroscopy. Similarly characterized, alpha- and ss-NaFe2O3, with a double layered rock salt structure, were synthesized for the first time as a bulk powder using an oxygen pressure regulation method that provided the appropriate conditions for the two polymorphs to form.;Further, investigation into T-LiFeO2 and NaFe2O 3 by doping other transition metals into the iron position, to control specific properties of the two materials was performed with success. T- T-LiFeO 2 and the parent phase, ss-NaFeO2, were doped with up to 0.1 and 0.15 parts of cobalt per formula unit respectively. NaFe2O3 was successfully doped with cobalt up to 0.5 moles with pure phases of both the alpha-NaFe 1.5Co0.5O3 and ss-NaFe1.5 Co0.5O3 forming. Manganese doping into NaFe 2O3 also showed the formation of the alpha- phase.;Probing the Fe3+/4+ redox potential of both T-LiFeO 2 and LiFeTiO4 resulted in the decomposition of each. The cobalt doped T-LiFeO2 though did show a greater possibility of cycling at Fe3+/4+ redox potential, but also resulted in a reaction with the organic electrolyte. Chemical deintercalation of T-LiFeO 2 and LiFeTiO4 were performed with resulting in the decomposition of LiFeTiO4. T-LiFeO2, indicated successful lithium deintercalation with preliminary Mossbauer results illustrating Fe 4+ formation. Both LiFeTiO4 and T-LiFeO2 successfully cycled electrochemically at the Fe2+/3+ redox potential, with the new calcium ferrite structure polymorph LiFeTiO4 cycling 17 % higher capacity than the previously reported spinel and rock salt structure compounds.
机译:通过锂从已知化合物ss-NaFeO 2和NaFeTiO4合成了用于锂离子交换的新型锂离子电池正极材料。这些已知钠化合物的所得锂类似物T-LiFeO2和LiFeTiO4包含隧道状结构,这些结构使用粉末X射线衍射的Rietveld精制,电化学测量,莫斯鲍尔光谱,热重分析和电感耦合等离子体光谱进行了表征。具有类似特征的具有双层岩盐结构的α-和ss-NaFe2O3首次使用氧气压力调节方法以散装粉末的形式合成,为两种多晶型物的形成提供了合适的条件。通过将其他过渡金属掺杂到铁位置,从而控制两种材料的特定性能,成功地将其转变为T-LiFeO2和NaFe2O 3。每个配方单元分别向T-T-LiFeO 2和母相ss-NaFeO2掺杂多达0.1和0.15份的钴。 NaFe2O3成功地掺杂了高达0.5摩尔的钴,形成了α-NaFe1.5Co0.5O3和ss-NaFe1.5 Co0.5O3的纯相。锰掺杂到NaFe 2O3中也显示出α相的形成;探测T-LiFeO 2和LiFeTiO4的Fe3 + / 4 +氧化还原电位会导致它们的分解。钴掺杂的T-LiFeO2虽然确实显示出在Fe3 + / 4 +氧化还原电势下循环的更大可能性,但也导致了与有机电解质的反应。对T-LiFeO 2和LiFeTiO4进行化学脱嵌,导致LiFeTiO4分解。 T-LiFeO2表示锂脱嵌成功,Mossbauer初步结果表明形成了Fe 4+。 LiFeTiO4和T-LiFeO2均在Fe2 + / 3 +氧化还原电势下成功地电化学循环,新的铁酸钙结构多晶型物LiFeTiO4的循环容量比以前报道的尖晶石和岩盐结构化合物高17%。

著录项

  • 作者

    Bruno, Shaun R.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号