首页> 外文学位 >Redox regulation of cysteine-674 of SERCA 2 is critical for growth factor- and ischemia-induced angiogenesis.
【24h】

Redox regulation of cysteine-674 of SERCA 2 is critical for growth factor- and ischemia-induced angiogenesis.

机译:SERCA 2的半胱氨酸674的氧化还原调节对生长因子和局部缺血诱导的血管生成至关重要。

获取原文
获取原文并翻译 | 示例

摘要

Ischemic cardiovascular disease shows trends of increasing morbidity and mortality in the United States and around the world. Current therapeutic options are limited, but the identification of key disease mechanisms and targets will inform novel therapeutic development to help decrease disease burden. One potential target is the sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA), a key regulator of Ca2+ homeostasis which plays multiple roles in the cardiovascular system. SERCA catalyzes the hydrolysis of ATP and couples it to the translocation of free cytosolic Ca 2+ into SR/ER stores. SERCA is redox-regulated, and is susceptible to both stimulatory and inhibitory oxidative post-translational modification. For example, oxidation of SERCA by physiological levels of nitric oxide (NO) causes reversible oxidative modification of SERCA cysteine thiols by introducing glutathione adducts. S-glutathiolation enhances SERCA Ca2+ uptake activity, which results in rapid reductions in cytoplasmic Ca2+ levels, and promotes endothelial angiogenic responses in vitro..;S-glutathiolation of SERCA specifically at cysteine-674 (C674) is a key signal regulating SERCA activity under physiological conditions, and a next crucial step is establishing causal relationships between defects in C674 S-glutathiolation and human disease. The following study elucidates the role of redox regulation of the C674 thiol in the mechanisms of vascular disease by employing a SERCA 2 C674S knock-in (SKI) mouse in which the key thiol is lacking in 50% of SERCA, rendering the protein less able to be activated by glutathiolation. Following hind limb ischemia, SKI animals had impaired blood flow recovery, indicating an angiogenic defect. Cultured SKI microvascular endothelial cells showed impaired migration and decreased network formation. Fura-2 Ca2+ signaling studies revealed lower Ca2+ stores and decreased VEGF- and NO-induced Ca2+ influx. Also, hypoxia-induced expression of pro-angiogenic genes (VEGF, VEGF receptor 2 and eNOS) was decreased in SKI endothelial cells. Adenoviral overexpression of calreticulin, a major ER Ca2+ binding protein, enhanced levels of VEGF receptor protein and eNOS phosphorylation. Taken together, these data indicate that impairing normal redox regulation of the C674 thiol via reversible S-glutathiolation interferes with endothelial cell Ca2+ homeostasis and angiogenic gene expression, suggesting mechanisms by which impaired SERCA glutathiolation contributes to worsened angiogenesis during ischemia.
机译:在美国和全世界,缺血性心血管疾病显示出发病率和死亡率增加的趋势。当前的治疗选择是有限的,但是关键疾病机制和靶标的鉴定将为新型治疗方法的发展提供信息,以帮助减轻疾病负担。潜在的靶标是肌浆网/内质网Ca 2+ ATPase(SERCA),Ca2 +稳态的关键调节因子,在心血管系统中起多种作用。 SERCA催化ATP的水解并将其与游离胞质Ca 2+转运到SR / ER储存库中。 SERCA是氧化还原调节的,并且容易受到刺激性和抑制性氧化后翻译修饰的影响。例如,生理水平的一氧化氮(NO)对SERCA的氧化会通过引入谷胱甘肽加合物而引起SERCA半胱氨酸硫醇的可逆氧化修饰。 S-谷氨硫酰化增强SERCA Ca2 +摄取活性,从而导致细胞质Ca2 +水平快速降低,并促进体外内皮血管生成反应。.; S-戊二硫醇化SERCA专门针对半胱氨酸674(C674)是调节SERCA活性的关键信号生理条件,下一步的关键步骤是建立C674 S-谷氨酰胺化缺陷与人类疾病之间的因果关系。以下研究通过采用SERCA 2 C674S敲入(SKI)小鼠(其中关键硫醇缺少SERCA的50%)来阐明C674巯基的氧化还原调节在血管疾病机理中的作用,从而使该蛋白的能力降低被谷硫醇化激活。后肢缺血后,SKI动物的血流恢复受损,表明有血管生成缺陷。培养的SKI微血管内皮细胞显示出受损的迁移和减少的网络形成。 Fura-2 Ca2 +信号传导研究表明,Ca2 +的储存量较低,而VEGF和NO诱导的Ca2 +内流减少。而且,在SKI内皮细胞中,低氧诱导的促血管生成基因(VEGF,VEGF受体2和eNOS)的表达降低。钙网蛋白(一种主要的ER Ca2 +结合蛋白)的腺病毒过表达,增强了VEGF受体蛋白的水平和eNOS磷酸化。综上所述,这些数据表明,通过可逆的S-谷氨硫醇化作用破坏C674硫醇的正常氧化还原调节会干扰内皮细胞Ca2 +稳态和血管生成基因的表达,提示SERCA谷氨酰化作用受损的机制是缺血期间血管生成恶化的原因。

著录项

  • 作者

    Thompson, Melissa Danielle.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Health Sciences Pharmacology.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号