首页> 外文学位 >Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems.
【24h】

Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems.

机译:DNA修饰的金纳米粒子系统的机械强度和稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications.;Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for evidence of mechanical strengthening as well as possible failure modes. To establish a foundation for AuNP-DNA stability analysis, several different two-particle conformations were investigated, including systems with pentagonally twinned AuNPs, systems with circular AuNPs, systems with non-textured and textured cuboctahedron AuNPs with 6 nm DNA, 12 nm DNA, and 18 nm DNA. In general, the analyses indicated that the systems' stability are mainly affected by large stress gradients at AuNP-ligand interfaces, as well as large dislocation-density, normal stresses, and inelastic accumulations in the region adjacent to these interfaces between the AuNPs and the DNA. The predictions also indicate that highly faceted f.c.c. AuNPs with DNA lengths of approximately 6 nm in biaxial loading conditions were found to have the highest strength and overall stability.;Furthermore, periodic AuNP-DNA superlattice composites, which mimic the crystallography of f.c.c. atomic lattices, were investigated for mechanical effectiveness as both a composite material and thin film. This investigation analyzed the stress behavior and inelastic evolution of f.c.c. AuNP-DNA superlattice systems with different Au volume fractions, matrix strengths, intrinsic nanoparticle crystallographic orientations and sizes. These analyses were also extended to superlattice f.c.c. composites on a silicon substrate. The results indicate that f.c.c. AuNP-DNA superlattices have a combination of high strength and toughness due to the ductile nature of the nanoparticles in conjunction with the physical properties of the DNA and matrix materials. The superlattice films also exhibited high strengths and toughness, with the limiting factor being the interrelated aspects of film thickness and delamination. These predictions can be used as guidelines for using these composites, superlattices, and thin films as candidates for innovative building blocks for new material systems.
机译:金纳米颗粒(AuNP)用DNA进行功能化的系统具有在基因调控疗法,药物输送,传感,创新生物材料和材料模板中广泛应用的潜力。 DNA修饰的金纳米粒子(AuNP-DNA)系统的使用是由其自下而上的组装简便性以及通过利用AuNP的特征和行为对系统的机械,光学和电子特性进行可调性驱动的。多粒子排列。通过连接的DNA接头精确分布的AuNP的周期性排列可以被组装并以相对较大的长度规模使用,其数量级为数百纳米,以用于潜在的纳米级技术和应用。但是,由于AuNP-DNA系统的大小和组成的异质性,因此对于这些应用在机械负载下的稳定性还没有很好的理解或定量在相关的物理尺度上进行定量分析;因此,一种具有位错的大型专业有限元预测方法基于密度的晶体可塑性已用于研究在等离激元共振所需的物理尺寸内具有AuNP的AuNP-DNA-配体系统的机械稳定性。 AuNPs的晶体配方可解释多种晶体滑移,位错密度演变,晶格旋转和较大的非弹性应变。将低弹性制剂用于DNA和配体。非线性有限元方案基于对有限弹性和非弹性应变的考虑。这些方法被用来预测和理解基本的,与尺度有关的微观结构行为,不断发展的异质微观结构和局部现象,这些现象可能导致故障的发生和不稳定。每个系统都使用准静态平面应变拉伸和压缩来加载,以模拟应用程序的加载条件,并对弹性和非弹性演化进行了分析,以寻求机械加固以及可能的破坏模式的证据。为了建立AuNP-DNA稳定性分析的基础,研究了几种不同的两粒子构象,包括具有五边形孪晶AuNP的系统,具有圆形AuNP的系统,具有6 nm DNA,12 nm DNA的无纹理和纹理化的八面体AuNP的系统,和18 nm DNA。通常,分析表明,系统的稳定性主要受到AuNP-配体界面处的大应力梯度的影响,以及AuNPs与AuNPs界面附近这些界面附近区域的较大的位错密度,正应力和非弹性堆积。脱氧核糖核酸。这些预测还表明,f.c.c。发现在双轴加载条件下DNA长度约为6 nm的AuNP具有最高的强度和整体稳定性。此外,周期性的AuNP-DNA超晶格复合材料模仿了f.c.c的晶体学。研究了原子晶格作为复合材料和薄膜的机械有效性。这项研究分析了f.c.c.的应力行为和非弹性演化。具有不同Au体积分数,基质强度,固有纳米颗粒晶体学取向和大小的AuNP-DNA超晶格系统。这些分析也扩展到超晶格f.c.c.硅基板上的复合材料。结果表明f.c.c.由于纳米颗粒的延展性以及DNA和基质材料的物理特性,AuNP-DNA超晶格具有高强度和韧性的组合。超晶格薄膜还表现出高强度和韧性,限制因素是薄膜厚度和分层的相关方面。这些预测可以用作使用这些复合材料,超晶格和薄膜作为新材料系统的创新构件的候选准则。

著录项

  • 作者

    Lam, Letisha McLaughlin.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Mechanical.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号