首页> 外文学位 >Tuning Spin- and Valley-Degeneracies in Multicomponent Quantum Well Transport.
【24h】

Tuning Spin- and Valley-Degeneracies in Multicomponent Quantum Well Transport.

机译:调整多组分量子阱传输中的自旋和波谷简并。

获取原文
获取原文并翻译 | 示例

摘要

The theme of this thesis is manipulation of spin and valley degeneracies in two-dimensional electron systems (2DES) by locally or globally controlling the energy gaps between the two spin states or multiple valley states. Degeneracies in 2DES can be controlled internally or externally with magnetic, strain, and electrostatic fields. With magneto-transport measurements we can probe these spin and valley energy gaps. Spin degeneracies in quantum wells (QW) can be controlled with magnetic field by changing the tilt angle of the field with respect to the sample. Valley degeneracies can be controlled principally by growing QWs of a certain orientation and width. Furthermore, the valley energies can be controlled externally by applying strain or electrostatic gated devices.;We first consider transport signatures of controlled spin degeneracies. Magnetic fields can be used to control spin degeneracies and spin gaps by tuning the tilt angle of the field with respect to the sample plane. These spin dependencies can be observed at different tilt angles by conducting measurements of the longitudinal and Hall resistance. In particular, transport measurements in a Si/SiGe spin-split valley degenerate 2DES demonstrates anomalous rise of the transverse Hall resistance at certain quantized plateaus. With systematic tilted field data we map this anomaly to the longitudinal resistance, and also to directional derivatives of the longitudinal resistance. We also develop a theoretical model for estimating the spin-degenerate and spin-split density of states which we fit using the data on longitudinal resistance. We input the exactly calculated spin gaps at every tilt angle in the edge state model of quantum Hall effect, and we are able to provide a microscopic justification to the experimentally observed anomalous features by introducing a constant energy density of disordered states in our model.;We next consider transport signatures of controlled valley degeneracies. Valley degeneracies can be tuned with structural parameters such as growth orientation, QW width and additional confinement such as gating along specific directions. We detail a theory to calculate the ground energy of each valley in a multi-valley system, considering the influence of growth orientation, quantum confinement and miscut angles on valley degeneracies. We first study AlAs QWs grown along the high mobility (001) facet, which has two degenerate valleys. Since valley mass is anisotropic along different directions we can perform transport experiments with orientation sensitivity on specific sample geometries which permit us to distinguish between the valleys. The mass anisotropy also gives rise to anisotropy in valley resistance, and we measure the valley anisotropy ratio at various half-filling factors. The measurement of this resistance anisotropy ratio at half-filled Landau levels is the first evidence of valley ordering of Landau levels.;We also study AlAs QW grown along the lower mobility and lesser studied (111) facet with three degenerate valleys. Though they have not yet been experimentally demonstrated, on-axis AlAs (111) valleys would exhibit an SU(3)-like symmetry which is of interest due to the novelty of valley texture excitations which might arise. A small miscut angle to the principle growth axis allows us to grow defect-free (111) AlAs QWs but also breaks the degeneracy. We optimize the growth with AFM, TEM and XRD morphology characterization of the GaAs, AlGaAs and AlAs layers individually and in combination on (111) GaAs substrate. We show with numerical simulations that careful selection of miscut angle with respect to the valley orientation can exactly determine the valley degeneracy breaking in this SU(3)-like system. Furthermore, the valley degeneracies that we observe with transport characterization match with the numerical simulations. By choosing current to flow along the three valley orientations, and measuring the longitudinal resistance we can also infer the energetic ordering of the valleys.;Inspired by spintronic devices which manipulate the spin to achieve device functionality, we can propose devices which manipulate the valley or pseudo-spin state to identify new valleytronic devices. We introduce the basic design and concept behind the valley filter, devices whose function is to locally break the degeneracies in (001) AlAs QWs. We then show conceptual circuit elements such as valley diodes which block current as a measure of the fidelity of the valley filters. These circuit elements allow us to conceptualize a valleytronic non-volatile memory transistor device. We also detail prototype device fabrication steps for valley filter devices with deposition of external electrostatic and strain gate structures. Valleytronic devices might offer performance advantages over spin devices by substituting valley-ferromagnetism for spin-magnetism for a long lived memory state. (Abstract shortened by UMI.).
机译:本文的主题是通过局部或全局控制两个自旋态或多个谷态之间的能隙来操纵二维电子系统(2DES)中的自旋和谷态简并。 2DES中的简并性可以通过磁场,应变和静电场在内部或外部进行控制。利用磁传输测量,我们可以探测这些自旋和谷值能隙。可以通过改变磁场相对于样品的倾斜角,利用磁场来控制量子阱(QW)中的自旋简并。可以通过增加一定方向和宽度的量子阱来控制山谷的退化。此外,可以通过施加应变或静电门控器件从外部控制谷能量。我们首先考虑受控自旋简并的输运特征。通过调整磁场相对于样品平面的倾斜角度,磁场可用于控制自旋简并和自旋间隙。通过测量纵向和霍尔电阻,可以在不同的倾斜角度观察​​到这些自旋依赖性。特别是,在Si / SiGe自旋分裂谷的简并2DES中进行的输运测量表明,在某些量化的高原上横向霍尔电阻的反常上升。利用系统的倾斜场数据,我们将此异常映射到纵向电阻,还映射到纵向电阻的方向导数。我们还开发了一个理论模型,用于估计自旋简并的状态的自旋简并和自旋分裂的密度,我们使用纵向电阻数据进行拟合。我们在量子霍尔效应的边缘状态模型中输入了在每个倾斜角处精确计算出的自旋间隙,并且通过在模型中引入恒定的无序态能量密度,能够为实验观察到的异常特征提供微观证明。接下来,我们考虑控制山谷退化的运输特征。可以利用结构参数(例如生长方向,QW宽度)和其他限制条件(例如沿特定方向的门控)来调整山谷的退化。我们详细考虑了多谷系统中计算每个山谷的地面能量的理论,其中考虑了生长取向,量子限制和错切角度对山谷退化的影响。我们首先研究沿高迁移率(001)面生长的AlAs QW,该面具有两个退化的山谷。由于谷物质在不同方向上是各向异性的,因此我们可以对特定的样品几何形状进行定向敏感性的传输实验,从而使我们能够区分谷。质量各向异性也引起了谷电阻的各向异性,我们在各种半填充因子下测量了谷各向异性。在半填充的朗道水平上测量该电阻各向异性比率是朗道水平的山谷有序性的第一个证据。尽管尚未进行实验证明,但轴向AlAs(111)谷会表现出类似SU(3)的对称性,这是由于可能出现的谷纹理激发的新颖性而引起的。与主生长轴的误切角较小,可以使我们生长无缺陷的(111)AlAs量子阱,但也可以破坏简并性。我们分别对(111)GaAs衬底上的GaAs,AlGaAs和AlAs层进行AFM,TEM和XRD形态表征来优化生长。我们通过数值模拟显示出,相对于谷方向仔细选择错切角可以准确确定在类似SU(3)的系统中破坏谷的简并性。此外,我们用输运表征观察到的山谷退化与数值模拟相符。通过选择沿三个谷方向流动的电流并测量纵向电阻,我们还可以推断出谷的能量顺序。受自旋电子器件的启发,该器件操纵自旋以实现器件功能,我们可以提出操纵谷或自旋的器件。伪自旋状态以识别新的Valleytronic设备。我们介绍了谷值滤波器背后的基本设计和概念,这些器件的功能是局部打破(001)AlAs QW中的简并性。然后,我们展示了诸如谷值二极管之类的概念性电路元件,它们会阻止电流作为谷值滤波器保真度的度量。这些电路元件使我们可以概念化山谷电子非易失性存储晶体管器件。我们还将详细介绍用于沉积外部静电和应变栅结构的谷值滤波器器件的原型器件制造步骤。 Valleytronic器件可以通过用谷铁磁性替代自旋磁性来提供长寿命的存储状态,从而提供比自旋器件更高的性能优势。 (摘要由UMI缩短。)。

著录项

  • 作者

    Prabhu-Gaunkar, Sunanda.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Physics General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 321 p.
  • 总页数 321
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号