首页> 外文学位 >Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft.
【24h】

Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft.

机译:大型挠性旋翼飞机的飞行动力学仿真建模和控制。

获取原文
获取原文并翻译 | 示例

摘要

A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various control systems are flown in a fixed-base simulator. Pilot inputs and aircraft performance are recorded and analyzed.
机译:针对XV-15和大型民用倾转旋翼(LCTR)概念,开发并验证了高级旋翼飞机数学模型。数学模型是通用的,并且允许任何旋翼飞机配置,从单个主旋翼直升机到同轴旋翼飞机。在分析中使用了刚体和流入状态,以及柔性机翼和叶片状态。每个旋翼飞行器组件的单独建模允许包括结构灵活性,这在建模大型飞机时很重要,在大型飞机中,结构模式会影响感兴趣的飞行动力学频率​​范围,通常为1到20 rad / sec。给出了数学模型公式的详细信息,包括结构,气动和惯性载荷的推导。通过利用树形拓扑,使用类似于多体分析的方法来开发飞机各部件的链接,但没有约束方程式。给出了机翼柔韧性影响的评估。通过查看刚体模式与机翼结构模式之间的耦合特性来评估柔韧性效果,反之亦然。分析了各种不同形式的结构反馈对飞机动力学的影响。结构加速度的比例积分反馈被认为在改善阻尼和减少结构模态的整体激励方面是最有效的。然后在全订单的灵活LCTR模型上实现遵循模型的控制体系结构。对于这架飞机,四种最低频率的结构模式低于20 rad / sec,因此是控制律发展和分析所必需的。研究了结构反馈对态度命令,态度保持(ACAH)和平移速率命令(TRC)响应类型的影响。刚性飞机模型具有乐观的性能特征,为刚性飞机设计的控制系统可能会破坏柔性飞机的稳定性。各种控制系统都在固定基础的模拟器中飞行。记录并分析飞行员的输入和飞机性能。

著录项

  • 作者

    Juhasz, Ondrej.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 392 p.
  • 总页数 392
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号