首页> 外文学位 >Physiology-based Mathematical Models for the Intensive Care Unit: Application to Mechanical Ventilation.
【24h】

Physiology-based Mathematical Models for the Intensive Care Unit: Application to Mechanical Ventilation.

机译:重症监护室基于生理的数学模型:在机械通气中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This work takes us a step closer to realizing personalized medicine, complementing empirical and heuristic way in which clinicians typically work. This thesis presents mechanistic models of physiology. These models, given continuous signals from a patient, can be fine-tuned via parameter estimation methods so that the model's outputs match the patient's. We thus obtain a virtual patient mimicking the patient at hand. Therapeutic scenarios can then be applied and optimal diagnosis and therapy can thus be attained. As such, personalized medicine can then be achieved without resorting to costly genetics.;In particular we have developed a novel comprehensive mathematical model of the cardiopulmonary system that includes cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control. Validity of the model was proven by the excellent agreement with real patient data, under normo-physiological as well as hypercapnic and hypoxic conditions, taken from literature.;As a concrete example, a submodel of the lung mechanics was fine-tuned using real patient data and personalized respiratory parameters (resistance, Rrs, and compliance, Crs) were estimated continually. This allows us to compute the patient's effort (Work of Breathing), continuously and more importantly noninvasively.;Finally, the use of Bayesian estimation techniques, which allow incorporation of population studies and prior information about model's parameters, was proposed in the contest of patient-specific physiological models. A Bayesian Maximum a Posteriori Probability (MAP) estimator was implemented and applied to a case-study of respiratory mechanics. Its superiority against the classical Least Squares method was proven in data-poor conditions using both simulated and real animal data.;This thesis can serve as a platform for a plethora of applications for cardiopulmonary personalized medicine.
机译:这项工作使我们离实现个性化医学更近了一步,补充了临床医生通常工作的经验和启发式方式。本文提出了生理机制。在给定来自患者的连续信号的情况下,可以通过参数估计方法对这些模型进行微调,以使模型的输出与患者的输出相匹配。因此,我们获得了一个虚拟的病人,模仿了附近的病人。然后可以应用治疗方案,从而可以实现最佳诊断和治疗。这样一来,无需依靠昂贵的遗传即可实现个性化医学。特别是我们开发了一种新颖的心肺系统综合数学模型,其中包括心血管循环,呼吸力学,组织和肺泡气体交换以及短期神经控制。在正常生理以及高碳酸血症和低氧的情况下,与文献中的真实患者数据的高度吻合证明了该模型的有效性。作为一个具体示例,使用真实患者对肺力学的子​​模型进行了微调持续评估数据和个性化呼吸参数(阻力,Rrs和顺应性,Crs)。这使我们能够连续且更重要的是无创地计算患者的努力(呼吸工作)。最后,在患者竞赛中提出了使用贝叶斯估计技术的方法,该技术允许将总体研究和有关模型参数的先验信息结合在一起特定的生理模型。贝叶斯最大后验概率(MAP)估计器已实现,并应用于呼吸力学的案例研究。使用模拟和真实动物数据在数据匮乏的条件下证明了其相对于经典最小二乘方法的优越性。本论文可以作为大量心肺个性化医学应用的平台。

著录项

  • 作者

    Albanese, Antonio.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号