首页> 外文学位 >Optimal wave focusing for seismic source imaging.
【24h】

Optimal wave focusing for seismic source imaging.

机译:地震源成像的最佳波聚焦。

获取原文
获取原文并翻译 | 示例

摘要

In both global and exploration seismology, studying seismic sources provides geophysicists with invaluable insight into the physics of earthquakes and faulting processes. One way to characterize the seismic source is to directly image it. Time-reversal (TR) focusing provides a simple and robust solution to the source imaging problem. However, for recovering a well- resolved image, TR requires a full-aperture receiver array that surrounds the source and adequately samples the wavefield. This requirement often cannot be realized in practice. In most source imaging experiments, the receiver geometry, due to the limited aperture and sparsity of the stations, does not allow adequate sampling of the source wavefield. Incomplete acquisition and imbalanced illumination of the imaging target limit the resolving power of the TR process. The main focus of this thesis is to offer an alternative approach to source imaging with the goal of mitigating the adverse effects of incomplete acquisition on the TR modeling. To this end, I propose a new method, named Backus-Gilbert (BG) source imaging, to optimally focus the wavefield onto the source position using a given receiver geometry. I first introduce BG as a method for focusing waves in acoustic media at a desired location and time. Then, by exploiting the source-receiver reciprocity of the Green function and the linearity of the problem, I show that BG focusing can be adapted and used as a source-imaging tool. Following this, I generalize the BG theory for elastic waves. Applying BG formalism for source imaging requires a model for the wave propagation properties of the earth and an estimate of the source location. Using numerical tests, I next examine the robustness and sensitivity of the proposed method with respect to errors in the earth model, uncertainty in the source location, and noise in data. The BG method can image extended sources as well as point sources. It can also retrieve the source mechanism. These features of the BG method can benefit the data-fitting algorithm that is introduced in the last part of this thesis and is used for modeling the geometry of the subducting slab in South America. The input to the proposed data-fitting algorithm are the depth and strike samples inferred from the location and focal mechanism of the subduction-related earthquakes in the South American subduction zone.
机译:在全球和勘探地震学中,对地震源的研究为地球物理学家提供了有关地震和断裂过程物理学的宝贵见解。表征地震源的一种方法是直接对其成像。时间反转(TR)聚焦为源成像问题提供了一种简单而强大的解决方案。但是,为了恢复分辨率良好的图像,TR需要一个全口径的接收器阵列,该阵列围绕信号源并充分采样波场。该要求通常在实践中无法实现。在大多数源成像实验中,由于站的孔径和稀疏性有限,接收器的几何形状无法对源波场进行足够的采样。成像目标的不完全采集和不平衡照明限制了TR过程的分辨能力。本文的主要重点是为源成像提供一种替代方法,以减轻不完整采集对TR建模的不利影响。为此,我提出了一种新方法,称为Backus-Gilbert(BG)源成像,可以使用给定的接收器几何结构将波场最佳地聚焦到源位置。我首先介绍BG作为一种将波聚焦在所需位置和时间的声介质中的方法。然后,通过利用格林函数的源-接收器互易性和问题的线性度,我证明了BG聚焦可被改编并用作源成像工具。在此之后,我对弹性波的BG理论进行了概括。将BG形式主义应用于源成像需要一个地球波传播特性的模型和源位置的估计。接下来,通过数值测试,我将针对地球模型中的误差,震源位置的不确定性以及数据中的噪声,对所提出方法的鲁棒性和敏感性进行检验。 BG方法可以对扩展源以及点源成像。它还可以检索源机制。 BG方法的这些特征可以使本文最后一部分介绍的数据拟合算法受益,该算法用于建模南美俯冲板的几何形状。拟议的数据拟合算法的输入是根据南美俯冲带俯冲相关地震的位置和震源机制推断出的深度和走向样本。

著录项

  • 作者

    Bazargani, Farhad.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Geophysics.;Geophysical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号