首页> 外文学位 >High quality silicon photonic devices based on heterogeneous integration method.
【24h】

High quality silicon photonic devices based on heterogeneous integration method.

机译:基于异质集成方法的高质量硅光子器件。

获取原文
获取原文并翻译 | 示例

摘要

Having been widely utilized as the foundation material for CMOS industry, with high refractive index and large spectrum transparency window, silicon has also long been considered as a perfect platform for photonics applications. Optical structures such as microcavities, photonic crystals, interferometers and etc. have already been demonstrated as on-chip silicon photonic devices. Such platforms have already been utilized in different applications such as high speed optical signal processing, optomechanical system demonstration, optical nonlinearity research and etc. Moreover, since the optical property of integrated silicon photonic devices are highly susceptible to the change of the refractive index of the surrounding medium, ultrasensitive optical sensor has also been demonstrated in various fields such as chemical and biological sensing, fiber strain analysis, EM (electromagnetic) field sensing, mechanical motion sensing and etc. However, silicon dioxide, as the material for the buried layer of silicon on insulator (SOI) substrate, which is the most widely adopted silicon photonic device platform, has limited both the optical and mechanical potential for silicon based optical sensor since it possesses a very narrow transparency window and is highly rigid. Within the past decades, flexible electronics based on inorganic material has been successfully demonstrated by using stamp-assisted heterogeneous integration method, which could also be applied to the field of silicon photonics. This thesis has been focusing on utilizing various heterogeneous fabrication methods such as integrating high quality silicon photonic devices onto materials other than silicon dioxide, or applying polymer based materials on top of SOI substrate in order to demonstrate devices with novel applications which are inaccessible with traditional silicon photonic devices. Firstly, a highly sensitive strain sensor is demonstrated by transferring silicon ring resonator and Mach-Zehnder Interferometer (MZI) onto stretchable PDMS substrate. Secondly, fully integrated silicon photonic circuit with grating couplers and ring resonators has been successfully transferred onto thin and flexible plastic substrate. Thirdly, by using a photoresist-pedestal assisted transfer method, a microcavity-enhanced mid-infrared optical chemical sensor is successfully demonstrated by using a silicon-on-calcium difluoride platform. Lastly, by applying a thin layer of polymer on one-dimensional photonic crystal cavity, an ultrasensitive infrared optical chemical sensor is realized.
机译:硅已被广泛用作CMOS工业的基础材料,具有高折射率和大光谱透明性窗口,长期以来也被认为是光子学应用的理想平台。诸如微腔,光子晶体,干涉仪等的光学结构已经被证明为片上硅光子器件。这样的平台已经被用于不同的应用中,例如高速光信号处理,光机械系统演示,光学非线性研究等。此外,由于集成硅光子器件的光学特性高度易受光学器件折射率的变化的影响。在周围介质中,超灵敏光学传感器也在化学和生物传感,纤维应变分析,EM(电磁)场传感,机械运动传感等各个领域得到了证明。但是,二氧化硅是用于掩埋层的材料绝缘体上硅(SOI)衬底是最广泛采用的硅光子设备平台,它具有非常窄的透明窗口并且具有很高的刚性,因此限制了基于硅的光学传感器的光学和机械潜能。在过去的几十年中,通过使用压模辅助的异质集成方法成功地证明了基于无机材料的柔性电子技术,该方法也可以应用于硅光子学领域。本论文一直致力于利用各种异质制造方法,例如将高质量的硅光子器件集成到二氧化硅以外的材料上,或在SOI衬底上应用基于聚合物的材料,以展示具有传统硅无法使用的新颖应用的器件光子设备。首先,通过将硅环谐振器和Mach-Zehnder干涉仪(MZI)转移到可拉伸的PDMS基板上,展示了一种高灵敏度的应变传感器。其次,具有光栅耦合器和环形谐振器的完全集成的硅光子电路已经成功地转移到了薄而柔软的塑料基板上。第三,通过使用光致抗蚀剂基架辅助转移方法,通过使用二氟化钙硅平台成功地证明了微腔增强的中红外光学化学传感器。最后,通过在一维光子晶体腔上涂覆聚合物薄层,实现了超灵敏的红外光学化学传感器。

著录项

  • 作者

    Chen, Yu.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号