首页> 外文学位 >RANS and Hybrid LES/RANS Simulation of Airfoil under Static and Dynamic Stall.
【24h】

RANS and Hybrid LES/RANS Simulation of Airfoil under Static and Dynamic Stall.

机译:静态和动态失速条件下机翼的RANS和混合LES / RANS仿真。

获取原文
获取原文并翻译 | 示例

摘要

The hybrid Large-Eddy/Reynolds-Averaged Navier-Stokes (LES/RANS) and RANS simulations are used to investigate the aerodynamic characteristics of subsonic flow over airfoils undergoing dynamic and static stall. Simulations of flow over the Aerospatiale A-Airfoil show that the Menter BSL/SST RANS models, along with the LES/RANS models of Choi and Gieseking, accurately capture the velocity and Reynolds-stress fields associated with incipient trailing-edge separation. The inclusion of the Menter-Langtry transition model enables the capturing of an initial region of laminar flow culminating in a laminar separation bubble, in accord with experimental results. However, the transition model also results in a general thinning of the boundary layer downstream of the peak skin friction location and the elimination of incipient separation near the trailing edge. In the simulations of NACA 0012 airfoil at static stall case, Menter's SST with and without the inclusion of Menter-Langtry transition model both predict an attached flow at the leading edge, whereas the Gieseking's LES/RANS model on a coarser mesh predicts a massively separated flow characterized by the stabilization of a detached leading edge vortex near the trailing edge. The predictions by Gieseking's model on a coarse mesh agree closely with PIV measurements of mean velocity, the Reynolds axial stress and the Reynolds normal stress, but over-predict the magnitude of the Reynolds shear stress. However, Gieseking's model on a fine mesh predicts a more attached flow because the under-resolved LES on the fine mesh (but not fine enough as required in a wall-resolved LES) fails to reproduce the cascade process at the smaller scale and results in an overly-energetic boundary layer near leading edge which resists and delays the separation. In 3D simulations of NACA 0012 dynamic stall case, Gieseking's model on a coarse mesh in spanwise direction correctly predicts response of the massive separation at static stall angle of 16.7° during downstroke pitching, but it also predicts some leading edge separation which is not present in the experiment during upstroke pitching. Mesh refinement in the spanwise direction helps reducing the level of leading edge separation during upstroke pitching, but results in an under-separated flow solution for downstroke response.
机译:混合大涡/雷诺平均Navier-Stokes(LES / RANS)和RANS模拟用于研究经历动态和静态失速的机翼上亚音速流的空气动力学特性。航空航天A型机翼上的流动模拟表明,Menter BSL / SST RANS模型以及Choi和Gieseking的LES / RANS模型可以准确地捕获与初期后缘分离相关的速度和雷诺应力场。根据实验结果,包含Menter-Langtry转换模型可捕获层流最终聚集在层流分离泡中的初始区域。但是,过渡模型还会导致峰值皮肤摩擦位置下游的边界层普遍变薄,并消除后缘附近的初始分离。在静态失速情况下的NACA 0012机翼的模拟中,带有和不带有Menter-Langtry过渡模型的Menter的SST都预测了前沿的附着流,而在较粗的网格上的Gieseking的LES / RANS模型则预测了巨大的分离流动的特点是在后缘附近有一个分离的前缘涡流。 Gieseking模型在粗网格上的预测与平均速度,雷诺轴向应力和雷诺法向应力的PIV测量值非常吻合,但过高地预测了雷诺剪切应力的大小。但是,基于精细网格的Gieseking模型预测了更多的附着流,因为精细网格上的未充分分解的LES(但不如壁分解的LES所要求的足够精细)无法在较小的规模上重现级联过程,并导致靠近前缘的过度能量的边界层,阻止并延迟分离。在NACA 0012动态失速情况的3D模拟中,Gieseking的模型在沿展向方向的粗网格上正确预测了向下行程俯仰期间在静态失速角为16.7°时的大分离响应,但也预测了在上仰俯仰过程中的实验。沿翼展方向的网格细化有助于减少上冲程俯仰期间的前缘分离程度,但会导致分离不足的流量解决方案,从而实现下冲程响应。

著录项

  • 作者

    Ke, Jianghua.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号