首页> 外文学位 >Numerical Simulation of a Dual-Mode Scramjet Using a RANS and Hybrid LES-RANS Approach.
【24h】

Numerical Simulation of a Dual-Mode Scramjet Using a RANS and Hybrid LES-RANS Approach.

机译:使用RANS和混合LES-RANS方法的双模超燃冲压发动机的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a numerical simulation study is carried out on a dual-mode, single ramp-injected, hydrogen-burning scramjet located at the University of Virginia (UVa), using both RANS and Hybrid LES/RANS simulation techniques. The solver used is NC State's REACTMB, which uses Edwards' LDFSS flux-splitting method and higher-order data reconstruction to solve reactive flows on three-dimensional structured meshes. Two chemical kinetics mechanisms are utilized: Jachimowski 1992 and Burke. In addition to laminar chemistry, three simple subgrid turbulence-chemistry closures are implemented. Efforts are also made to accommodate some facility-dependent parameters such as thermal non-uniformity of the facility inflow.;The numerical results are compared with an array of high-fidelity diagnostic information gathered from the UVa scramjet experiments. The diagnostic data available includes hydroxyl planar laser-induced fluorescence (OH-PLIF), coherent anti-Stokes Raman scattering (CARS), focusing Schlieren, stereoscopic particle image velocimetry (SPIV), and combustor wall pressure measurements. Two separate flowpath configurations are considered; for each, two equivalence ratios are simulated. Configuration A (∼33 M. cells) has no isolator and operates in scram mode for both &phis; = 0.17 and &phis; = 0.34. Configuration C (∼66 M. cells) includes an isolator and a longer combustor and transitions from scram to ram mode between &phis; = 0.17 and &phis; = 0.49.;RANS simulations of both configurations under scram conditions predict a flame anchored mainly to the injection wall of the combustor in the near-injector field, and loosely to the back face of the injector itself. There is an abrupt increase in flame temperature three to four ramp heights downstream of injection. In contrast, Hybrid LES/RANS simulations predict higher reactivity in the recirculating flow immediately behind the injector and also in the shear region between the core flow and the fuel jet. This leads to a higher pressure rise at the point of injection and a less abrupt pressure increase further downstream. The agreement between predicted average flame temperatures and CARS measurements is substantially better with Hybrid LES/RANS than with RANS; this is primarily due to the resolution of large turbulent structures and the resulting lower flame temperatures in Hybrid LES/RANS simulations. During Configuration C mode-transition simulation, the combustion shock train settles at a position slightly further downstream than experimentally observed. This results in lower predicted combustor pressures compared to experiments.;OH-PLIF data taken during scram operation indicates the presence of small turbulent structures within the flame which serve to broaden local flame structures and are not captured in the Hybrid LES/RANS simulations. Comparisons with CARS data indicate an over-prediction of average flame temperatures and species mixing rates, especially in the highly turbulent flameholding region just downstream of the fuel injector. This overprediction is attributed to solver deficiencies in regions of very high levels of turbulence and also an improper capturing of the levels and scales of turbulence entering the combustor due to a thin boundary layer (compared to mesh width) at the inflow. The use of various subgrid turbulence-chemistry closures in Configuration C provides some improvement in the prediction of flame temperatures but does not improve the prediction of turbulent mixing rates. Forcing the isolator to operate in full-RANS mode results in better prediction of the latter.;Post-simulation analysis using laminar flamelet theory is conducted for a Hybrid LES/ RANS simulation of Configuration C operating in scram mode. The subgrid instantaneous scalar dissipation rate is modeled using an estimate of the subgrid spatial variance of mixture fraction. The analysis reveals a region of high instantaneous scalar dissipation rate initially concentrated within the fuel jet and suddenly broadened by a shock / flame interaction. Also observed are resolved flame extinction (or perhaps suppressed ignition) events which occur near the injector due to high scalar dissipation rates, likely caused by the aforementioned shock / flame interaction. (Abstract shortened by UMI.).
机译:在这项工作中,使用RANS和混合LES / RANS仿真技术,对位于弗吉尼亚大学(UVa)的双模,单斜波喷射,氢燃烧超燃冲压发动机进行了数值模拟研究。所使用的求解器是NC State的REACTMB,它使用Edwards的LDFSS通量分裂方法和高阶数据重建来求解三维结构化网格上的反应流。利用了两种化学动力学机制:Jachimowski 1992和Burke。除了层流化学外,还实现了三个简单的亚网格湍流-化学封闭。还努力适应一些与设备有关的参数,例如设备流入的热不均匀性。将数值结果与从UVa超燃冲压实验中收集的一系列高保真诊断信息进行比较。可用的诊断数据包括羟基平面激光诱导的荧光(OH-PLIF),相干反斯托克斯拉曼散射(CARS),聚焦Schlieren,立体粒子图像测速(SPIV)和燃烧室壁压测量。考虑了两个单独的流路配置;分别模拟了两个当量比。配置A(〜33 M.单元)没有隔离器,并且对于两个φ都以scram模式运行。 = 0.17和&phis; = 0.34。配置C(约66个M.单元)包括一个隔离器和一个较长的燃烧器,并且在φ和φ之间从scram模式过渡到ram模式。 = 0.17和&phis; = 0.49 。;在稀燃条件下两种配置的RANS仿真预测火焰主要锚定在近喷射器场中的燃烧器的喷射壁上,并松散地固定在喷射器本身的背面上。喷射下游的火焰温度突然升高三到四个斜坡高度。相反,混合LES / RANS模拟预测紧接在喷油器后面的循环流以及岩心流和燃料射流之间的剪切区域中的较高反应性。这导致在注射点的压力升高更高,而在下游进一步的压力升高则不那么突然。 Hybrid LES / RANS的预测平均火焰温度与CARS测量值之间的一致性比RANS更好。这主要归因于大型湍流结构的分辨率以及混合LES / RANS模拟中较低的火焰温度。在配置C模式转换仿真过程中,燃烧冲击波列在比实验观察到的位置稍下游的位置。与实验相比,这将导致较低的预测燃烧室压力。急停运行过程中获得的OH-PLIF数据表明,火焰中存在小的湍流结构,这些湍流结构用于扩大局部火焰结构,在混合LES / RANS模拟中未捕获。与CARS数据的比较表明,平均火焰温度和物质混合速率过高,特别是在燃料喷射器下游的高度湍流火焰保持区域。这种过高的预测归因于湍流水平很高的区域中的求解器缺陷,并且归因于流入处的边界层薄(与网眼宽度相比),导致进入燃烧室的湍流水平和尺度的捕获不正确。在配置C中使用各种亚网格湍流化学封闭装置,可在火焰温度预测中提供一些改进,但不能改善湍流混合速率的预测。强制隔离器在全RANS模式下运行可以更好地预测后者。进行了层流小火焰理论的后仿真分析,以对以scram模式运行的配置C进行混合LES / RANS仿真。使用对混合分数的子网格空间方差的估计来对子网格瞬时标量耗散率建模。该分析揭示了一个高瞬时标量耗散率的区域,该区域最初集中在燃料射流内,然后由于冲击/火焰相互作用而突然变宽。还观察到由于高标量耗散率而在喷射器附近发生的解决的火焰熄灭(或也许抑制的点火)事件,可能是由上述冲击/火焰相互作用引起的。 (摘要由UMI缩短。)。

著录项

  • 作者

    Fulton, Jesse Ambrose.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号