首页> 外文学位 >Tuning Surface Properties Using Self-Assembled Monolayers for Various Applications.
【24h】

Tuning Surface Properties Using Self-Assembled Monolayers for Various Applications.

机译:使用自组装单层膜调整表面性能以用于各种应用。

获取原文
获取原文并翻译 | 示例

摘要

The research presented in this dissertation focuses on the study of self-assembled monolayers (SAMs) in the modification of surface properties of different substrates for various applications. Self-assembled monolayers are organic molecules that can be deposited on a variety of surfaces, such as those of metals, metal-oxides, and semiconductors. Formation of SAMs on any inorganic material provides a ubiquitous way to impart desirable chemical and physical properties of organic and biological molecules to the inorganic substrate.;It has been demonstrated that single molecules and their self-assembled monolayers can significantly alter the physical and electronic properties of inorganic conductors; moreover, studies have shown that the performance of many electrical devices can be transformed by modifying inorganic electrodes with organic SAMs. This is especially important for the development of next generation of ultra-compact electronic devices, in which the ability to control the interfacial charge-transport with a single monolayer of organic molecules would be ideal. We have developed different organic electronic architectures as test beds for studying the effect of monolayer properties, such as structural and geometrical parameters, on their electronic properties. By using a typical organic electronic device as a sensitive test platform, slight changes in a monolayer property, such as length, have been detected by studying the current- voltage characteristics (JV) of organic diodes functionalized with self-assembled monolayers (SAMs) of varying alkyl chain-length. Next, we describe the application of SAMs based on n-octylphosphonic acid (C8PA) and 1H,1H,2H,2H-perfluorooctanephosphonic acid (PFOPA) as anode buffer layers in C60-based organic photovoltaic (OPV) devices. We used the OPV platform to compare stabilities of organic monolayers exposed to ambient conditions with SAMs positioned inside working OPV devices. We found that the stabilities are different, suggesting the degradation mechanisms are distinct. The degradation of the OPV efficiency with respect to air exposure was significantly reduced with the perfluorinated PFOPA compared to the aliphatic C8PA. We attributed the OPV degradation to moisture diffusion from the top aluminum electrode and we discuss that the lowering of the anode work function is the result of hydrolysis of the SAM buffer layer.;Next, we demonstrated the dependence of molecular electronic properties on the functional group substitution and that the changes in these properties can be measured using the organic light-emitting (OLED) platform. Specifically, we compared bilayered organic monomolecular systems immobilized on an inorganic electrode as the charge-injecting components of the organic light emitting diodes (OLEDs). Our bilayered interfaces comprise ordered inert primary and functional reactive layers, and they differ in only one parameter: the molecular structure of the terminal functional group. We demonstrate that we can visualize the differences in the charge transfer dynamics of two bilayered systems via patterned electroluminescence.;In addition, we describe a new protocol for the preparation of shape-controlled multicomponent particles comprising metallic (Au and Ti), magnetic (Ni), and oxide (SiO2, TiO2) layers. First, we discuss the application and attractiveness of the colloidal structures, Janus Particles (JPs), that possess two different surfaces, varying either in polarity, hydrophilicity, etc. Next, we present our method for specifically controlling the composition, shape, and size of the micro-JPs. We demonstrate how this protocol permits fabrication of non-symmetrical particles by orthogonally functionalizing their opposite sides using well-established organosilanes and thiol chemistries (based on SAMs). We propose that these colloids may be used as convenient materials for studying non-symmetrical self-assembly at the meso- and micro-scales, due to their unique geometries and surface chemistries.
机译:本论文的研究主要集中在自组装单分子膜(SAMs)的研究上,该膜用于各种用途的不同基材的表面改性。自组装单分子层是可以沉积在各种表面(例如金属,金属氧化物和半导体表面)上的有机分子。在任何无机材料上形成SAM提供了一种普遍的方法,可以赋予无机底物所需的有机和生物分子化学和物理特性。;已经证明,单分子及其自组装单分子层可以显着改变物理和电子特性无机导体;此外,研究表明,可以通过用有机SAM修饰无机电极来改变许多电子设备的性能。这对于开发下一代超紧凑型电子设备尤为重要,在该设备中,控制有机单分子单层界面电荷传输的能力将是理想的。我们已经开发了不同的有机电子体系结构作为测试床,用于研究单层特性(例如结构和几何参数)对其电子特性的影响。通过使用典型的有机电子器件作为敏感的测试平台,通过研究用自组装单分子层(SAMs)功能化的有机二极管的电流-电压特性(JV),已检测到单层性质(如长度)的细微变化。变化的烷基链长。接下来,我们描述基于正辛基膦酸(C8PA)和1H,1H,2H,2H-全氟辛烷膦酸(PFOPA)的SAM作为阳极缓冲层在基于C60的有机光伏(OPV)器件中的应用。我们使用OPV平台将暴露于环境条件下的有机单层的稳定性与位于工作OPV设备内部的SAM进行比较。我们发现稳定性是不同的,表明降解机理是不同的。与脂族C8PA相比,使用全氟化PFOPA可以显着降低OPV效率相对于空气暴露的降低。我们将OPV降解归因于铝电极顶部的水分扩散,并讨论了阳极功函数的降低是SAM缓冲层水解的结果。接着,我们证明了分子电子性质对官能团的依赖性取代,并且可以使用有机发光(OLED)平台测量这些特性的变化。具体来说,我们比较了固定在无机电极上的双层有机单分子体系,作为有机发光二极管(OLED)的电荷注入成分。我们的双层界面包含有序的惰性主要和功能性反应层,它们的区别仅在于一个参数:末端官能团的分子结构。我们证明了我们可以通过图案化的电致发光可视化两个双层系统中电荷转移动力学的差异。;此外,我们描述了一种制备包含金属(Au和Ti),磁性(Ni )和氧化物(SiO2,TiO2)层。首先,我们讨论具有两个不同表面,极性,亲水性等不同的胶体结构Janus粒子(JPs)的应用和吸引力。其次,我们介绍了专门控制组成,形状和大小的方法微型JP。我们演示了此协议如何通过使用功能完善的有机硅烷和硫醇化学成分(基于SAMs)将它们的相对侧面正交官能化来制造非对称粒子。我们建议这些胶体由于其独特的几何形状和表面化学性质,可以用作研究介观和微观尺度下非对称自组装的便捷材料。

著录项

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Physical chemistry.;Chemical engineering.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号