首页> 外文学位 >Application of stir bar sorptive extraction thermal desorption gas chromatography mass spectrometry for the study of water accommodated fractions of fossil fuels and biodiesel.
【24h】

Application of stir bar sorptive extraction thermal desorption gas chromatography mass spectrometry for the study of water accommodated fractions of fossil fuels and biodiesel.

机译:搅拌棒吸附萃取热解吸气相色谱质谱法在研究化石燃料和生物柴油中水份的应用中。

获取原文
获取原文并翻译 | 示例

摘要

Even though measures are taken to decrease accidental release of crude oil and refined fuels into the aquatic environment, continued demand of such fuels---particularly in the transportation sector---pose a continued threat to the aquatic environment throughout their handling, processing, and consumption. Even though measures can be taken to remove the visible layers of fuel in water, it has been shown that constituents of these fuels---that partition into water---can have adverse health effects on the aquatic organisms at low concentrations that are not necessarily predictable through the study of the actual fuel's original composition. Consequently, this renders the need for an extraction method that can quickly and efficiently extract these constituents from various types of water matrices so that the impact of fuels on aquatic life and the integrity of the environment can be studied and monitored in an accurate and timely manner.;The overarching goal of this project was to develop a less time consuming, effective and, environmentally friendly method to assess the composition of water accommodated fractions of refined fuel products. Diesel, having a wide variety of hydrocarbons, and its more environmentally friendly alternative biodiesel (B100) were selected for this study. More specifically, the study was aimed to: (1) optimize the stir bar sorptive extraction (SBSE) method before subsequent thermal desorption-gas chromatography mass spectrometry (TD-GCMS) to extract and analyze biodiesel fatty acid methyl esters (FAMEs) and dominant diesel hydrocarbons, by varying organic solvent addition in SBSE extraction, the stir time, and pH adjustment; (2) compare the composition between the fuel and its water accommodated fraction (WAF); and (3) implement the optimized parameters on actual water samples. Water samples were collected from Long Beach, California and the Gulf of Mexico.;Methanol was chosen as the organic solvent for the SBSE optimization. Our study found that methanol percentages of 50 percent---for n-alkanes---and 30 percent for aromatic hydrocarbons---in diesel rendered the better extraction efficiency from water matrices. For biodiesel, by 40 percent methanol content, FAMEs were sufficiently extracted. For all compounds of all fuels 4 hours rendered the best extraction efficiency for all fuels as a whole.. Our result showed that no pH adjustment was deemed necessary for improving the extraction recovery of water accommodated fraction of fuels. The water accommodated fraction of diesel showed an increased presence of aromatic hydrocarbons when compared to their presence in the diesel pure source in comparison to aliphatic hydrocarbons. Using biofuel (B100) the water accommodated fraction stayed relatively the same between saturated and unsaturated FAMEs. The detection limit of the optimized method was estimated to as low as 5ng/L for selected diesel alkanes, 5ug/L for selected diesel aromatic hydrocarbons, 5ppt for saturated hydrocarbons, and 0.1ug/L for unsaturated FAMEs. Using the optimized methanol and stir time parameters, water samples from the Gulf coast and the shores of Long Beach, CA were found to contain non-detectable or non-quantifiable levels of diesel constituents.;Results from this study will allow us to potentially analyze the toxicity and degradation of WAFs of diesel and similar fuels in fresh and sea water samples in an efficient and more environmentally conscious manner. Future directions in this research should be aimed towards further implementing this technique and its optimized parameters on actual water samples containing oil and to validate the method before fully applying this technique over other commonly used extraction techniques for the analysis of fuels.
机译:即使已采取措施减少原油和精炼燃料向水生环境的意外释放,但对此类燃料的持续需求(尤其是在运输领域)对整个处理,加工,加工,加工,加工,加工,和消费。即使可以采取措施去除水中可见的燃料层,但事实表明,这些燃料的成分-分解为水-会对低浓度的水生生物产生不利的健康影响,而这些浓度并不高。必须通过研究实际燃料的原始成分来预测。因此,这就需要一种提取方法,该方法可以从各种类型的水基质中快速有效地提取这些成分,从而可以准确,及时地研究和监测燃料对水生生物和环境完整性的影响。该项目的总体目标是开发一种耗时少,有效且环保的方法,以评估精制燃料产品的水容纳部分的组成。本研究选择了具有多种碳氢化合物的柴油及其更环保的替代生物柴油(B100)。更具体地说,该研究旨在:(1)优化搅拌棒吸附萃取(SBSE)方法,然后进行后续的热脱附-气相色谱质谱(TD-GCMS)萃取和分析生物柴油脂肪酸甲酯(FAME)和主要成分通过改变SBSE萃取中有机溶剂的添加量,搅拌时间和pH值来调节柴油中的碳氢化合物; (2)比较燃料及其含水分数(WAF)之间的组成; (3)对实际水样实施优化参数。从加利福尼亚州长滩和墨西哥湾收集了水样;选择甲醇作为SBSE优化的有机溶剂。我们的研究发现,柴油中甲醇的50%(正构烷烃)和30%(芳香烃)百分数使从水基质中提取的效率更高。对于生物柴油,甲醇含量为40%,因此可以充分提取FAME。对于所有燃料的所有化合物,4个小时对所有燃料整体而言具有最佳的提取效率。我们的结果表明,无需考虑调节pH值就可以提高含水率的燃料的提取回收率。与脂肪族烃相比,与柴油纯来源中存在的芳烃相比,柴油中的水容纳馏分显示芳烃的存在增加。使用生物燃料(B100)时,饱和FAME和不饱和FAME之间的含水量保持相对相同。对于所选的柴油烷烃,优化方法的检出限估计低至5ng / L,所选的柴油芳烃为5ug / L,饱和烃为5ppt,不饱和FAME为0.1ug / L。使用最优化的甲醇和搅拌时间参数,发现来自加利福尼亚州墨西哥湾沿岸和长滩海岸的水样中含有不可检测或不可量化的柴油成分。该研究的结果将使我们有可能进行分析以有效和更环保的方式,对淡水和海水样品中柴油和类似燃料的WAF的毒性和降解进行研究。这项研究的未来方向应旨在进一步在实际的含油水样中实施该技术及其优化参数,并在将该技术完全应用到其他常用提取技术进行燃料分析之前,对该方法进行验证。

著录项

  • 作者

    McCreary, Ricardo, Jr.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Analytical chemistry.
  • 学位 M.S.
  • 年度 2014
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

  • 入库时间 2022-08-17 11:53:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号