首页> 外文学位 >Toward High Energy and High Efficiency Secondary Lithium Batteries.
【24h】

Toward High Energy and High Efficiency Secondary Lithium Batteries.

机译:迈向高能高效二次锂电池。

获取原文
获取原文并翻译 | 示例

摘要

Lithium ion batteries and lithium sulfur batteries demonstrate great potentials to be the substitutes for fossil fuels in electric cars. The first part of this dissertation focused on the development of Li-Mn-rich composite cathode materials and high voltage spinel cathode materials for lithium ion batteries. Li-Mn-rich composite materials were synthesized using various methods to optimize their performances, including a polymer-assisted method, a co-precipitation method in a continuous stirred tank reactor (CSTR) and an aerosol method. The highest first discharge capacity of these composite materials was over 300 mAh/g. High voltage spinel cathode material LiNi0.24Mn 1.76O4 was prepared through a simple solid state method and the as-prepared material demonstrated excellent rate capabilities and cycling stabilities. High voltage spinel cathode material LiNi0.5Mn 1.5O4 in a nanowire structure was prepared through an electrospinning method followed by a heat-treating procedure. To obtain secondary lithium batteries with even higher capacities, the second part of the dissertation went beyond the lithium-ion concept to the lithium-sulfur chemistry. Novel lithium sulfur systems were designed and they delivered a capacity five times as much as lithium ion batteries can offer. A novel polysulfide-based electrolyte that prevents the performance degradation inherent to Li-S batteries was designed. By creating a dynamic equilibrium between the dissolution and precipitation of lithium polysulfides at the sulfur/electrolyte interface, the Li-S cells were capable of delivering a superior capacity (1450 mAh/g, sulfur), which along with the high coulombic efficiency and excellent cycle life make our cells among the best performing Li-S cells.
机译:锂离子电池和锂硫电池具有巨大的潜力,可以替代电动汽车中的化石燃料。本文的第一部分着眼于锂离子电池的富锂锰复合正极材料和高压尖晶石正极材料的开发。使用多种方法合成了富含Li-Mn的复合材料以优化其性能,包括聚合物辅助法,连续搅拌釜反应器(CSTR)中的共沉淀法和气溶胶法。这些复合材料的最高首次放电容量超过300 mAh / g。通过简单的固态方法制备了高压尖晶石正极材料LiNi0.24Mn 1.76O4,制备的材料显示出极好的倍率性能和循环稳定性。通过电纺丝方法,然后进行热处理程序,制备纳米线结构的高压尖晶石阴极材料LiNi0.5Mn 1.5O4。为了获得更高容量的二次锂电池,本论文的第二部分超越了锂离子概念,走向了锂硫化学。设计了新型锂硫系统,其容量是锂离子电池可提供的容量的五倍。设计了一种新型的基于多硫化物的电解质,可防止Li-S电池固有的性能下降。通过在硫/电解质界面处的多硫化锂的溶解和沉淀之间建立动态平衡,Li-S电池能够提供卓越的容量(1450 mAh / g,硫),并具有高库仑效率和优异的库仑效率。循环寿命使我们的电池成为性能最好的Li-S电池之一。

著录项

  • 作者

    Xu, Rui.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Materials science.;Energy.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号