首页> 外文学位 >Development of Electro-Mechanical Spinning for Controlled Deposition of Carbon Nanofibers.
【24h】

Development of Electro-Mechanical Spinning for Controlled Deposition of Carbon Nanofibers.

机译:机电纺丝技术控制碳纳米纤维沉积的研究进展。

获取原文
获取原文并翻译 | 示例

摘要

In the past few decades the fields of nanotechnology and miniaturized devices had an exponentially growth of interest in academic and research environment, leading to breakthroughs discoveries that are envisioned to have a profound impact on our economy and society in the near future. Recently, the focus is moving toward the development of technologies that enable the production of micro- /nano-devices on a larger scale and at lower costs. Among the different micro- /nano-devices manufacturing challenges, in this dissertation the aim is to reliably fabricate suspend carbon micro- /nano-fibers between two carbon electrode walls in a way that can be mass produced at relatively low cost.;The first part of this thesis provides an in depth overview of current methods used for the fabrication of carbon based micro devices (C-MEMS) and of electrospinning, a manufacturing technology that emerges as a simple and inexpensive approach to produce nanofibers. Electro-Mechanical Spinning (EMS) has been developed from electrospinning and optimized for the production of suspended carbon nanofibers, aiming to achieve greater deposition control at the single nanofiber level, while maintaining the low cost of electrospinning.;After the successful development of EMS, the so fabricated carbon micro- /nano-fibers have been characterized, first from the electrical point of view, then from the mechanical one. The electrical characterization involves conductivity measurements of fibers with respect of different and controllable manufacturing processes steps. Variations of those manufacturing parameters have been proven to be capable of tailoring the carbon structure and, therefore, the conductivity of the fibers within a desired range. Further investigation regarding the electrical properties was also conducted to prevent (or control) current induced fiber breakdown. Finally, the Young's modulus of those fibers was investigated and observed to be dependent on the fibers thickness. Similarly to conductivity, variations in Young's modulus are also related to formation of a different carbon structure when fibers diameter is below certain values. In conclusion, appropriate combinations of EMS and C-MEMS processes were proven to be capable of fabricating controllable suspended carbon nanofibers with tuned conductivity and Young's modulus properties.
机译:在过去的几十年中,纳米技术和小型设备领域对学术和研究环境的兴趣呈指数增长,这导致了突破性的发现,预料将在不久的将来对我们的经济和社会产生深远的影响。近来,焦点正在转向技术发展,该技术使得能够以较低的成本大规模生产微/纳米器件。在不同的微/纳米器件制造挑战中,本论文的目的是可靠地在两个碳电极壁之间制造悬浮的碳微/纳米纤维,以可以以相对较低的成本进行批量生产的方式。本文的一部分提供了对当前用于制造基于碳的微器件(C-MEMS)和静电纺丝的方法的深入概述,静电纺丝是一种作为生产纳米纤维的简单且廉价的方法而出现的制造技术。机电纺丝(EMS)是从静电纺丝技术发展而来的,并已针对生产悬浮碳纳米纤维进行了优化,旨在在保持纳米丝电纺丝成本低的同时实现对单个纳米纤维水平的更大沉积控制。如此制成的碳微纤维/纳米纤维首先要从电气角度进行表征,然后从机械角度进行表征。电气特性涉及针对不同且可控制的制造工艺步骤进行的纤维电导率测量。这些制造参数的变化已被证明能够调整碳的结构,因此可以在所需范围内调整纤维的导电性。还进行了有关电性能的进一步研究,以防止(或控制)电流引起的光纤击穿。最后,研究并观察到这些纤维的杨氏模量取决于纤维的厚度。与导电率相似,当纤维直径低于某些值时,杨氏模量的变化也与形成不同的碳结构有关。总之,事实证明,EMS和C-MEMS工艺的适当组合能够制造具有可调节的电导率和杨氏模量特性的可控悬浮碳纳米纤维。

著录项

  • 作者

    Canton, Giulia.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Nanotechnology.;Engineering Industrial.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号