首页> 外文学位 >Hydrodynamic and Mass Transport Properties of Microfluidic Geometries.
【24h】

Hydrodynamic and Mass Transport Properties of Microfluidic Geometries.

机译:微流体几何形状的流体动力学和传质特性。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic geometries allow direct observation of microscale phenomena while conserving liquid volumes. They also enable modeling of experimental data using simplified transport equations and static force balances. This is possible because the length scales of these geometries ensure low Re conditions approaching the Stokesian limit, where the flow profile is laminar, viscous forces are dominant and inertial forces are negligible. This work presents results on two transport problems in microfluidic geometries. The first examines the heterogeneous binding kinetics in a microbead array, where beads with different chemical functionalities are sequentially captured in a well geometry over which analyte solution is flowed. Finite element simulations identified the flow rates and microbead surface receptor densities at which the binding rate approaches the kinetic limit, validating the results for the prototype NeutrAvidin-biotin assay. The second part of this work discusses the dielectrophoretic motion of surfactant-stabilized water droplet pairs in a microchannel as they approach and coalesce under a uniform electric field. Experimental data measuring droplet-droplet separation distance versus time were fitted to a model using the quasi-static force balance between the attractive electrostatic force and the resistive hydrodynamic force with a single adjustable parameter representing the drag force coefficient between each droplet and the adjacent microchannel walls. For glass microchannels, the drag force coefficient values demonstrate no-slip. However, PDMS microchannels have significantly lower coefficient values corresponding to hydrodynamic slip lengths of 1-2 &mgr;m. These large slip lengths demonstrate that nanoporosity plays an important role in the hydrodynamics of PDMS microchannels.
机译:微流体几何形状允许直接观察微观现象,同时节省液体体积。它们还可以使用简化的运输方程式和静态力平衡对实验数据进行建模。这是可能的,因为这些几何形状的长度尺度可确保低Re条件接近Stokesian极限,在该极限下,流量分布为层流,粘性力占主导地位,而惯性力可忽略不计。这项工作提出了关于微流体几何学中两个运输问题的结果。第一种方法检查微珠阵列中的异质结合动力学,在微孔阵列中,具有不同化学功能的微珠被依次捕获在流动分析物溶液的孔几何结构中。有限元模拟确定了结合速率接近动力学极限的流速和微珠表面受体密度,从而验证了原型NeutrAvidin-生物素测定的结果。这项工作的第二部分讨论了表面活性剂稳定的水滴对在均匀电场中接近并聚结时在微通道中的介电泳运动。使用吸引静电力和阻力流体动力之间的准静态力平衡,将测量液滴与液滴分离距离随时间变化的实验数据拟合到模型中,其中单个可调参数表示每个液滴与相邻微通道壁之间的阻力系数。对于玻璃微通道,阻力系数值显示无滑移。然而,PDMS微通道具有明显较低的系数值,其对应于1-2μm的流体动力学滑移长度。这些大的滑移长度表明,纳米孔隙度在PDMS微通道的流体动力学中起着重要作用。

著录项

  • 作者

    Leary, Thomas F.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号