首页> 外文学位 >Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation.
【24h】

Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation.

机译:断层分割,机械相互作用和结构复杂性对地震产生的变形的影响。

获取原文
获取原文并翻译 | 示例

摘要

Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.
机译:地球的地形表面形成了一个界面,地球动力和地貌引擎相互作用。最好在地壳边缘观察到这种相互作用,在地壳边缘通过活动断层产生地形并通过地貌过程进行雕刻。地壳变形表现为百年至千禧年尺度的地震。鉴于地球上将近一半的人口生活在活跃的断裂带中,因此有必要对地震和断裂的力学机制有一个定量的了解,以建立准确的地震预报。我的研究依赖于大地震的地貌表现和控制其时空分布的物理过程的定量记录。我的研究的第一部分使用高分辨率地形激光雷达数据定量地记录了历史和史前大地震的地貌表现。激光雷达数据可以增强可视化和重建古地震沟槽暴露的结构和地层。利达(Lidar)对1992年Landers地震形成的断层陡坡的调查记录了由冬季暴风雨引起的反复侵蚀形成的厘米级侵蚀地形。我的研究的第二部分使用准静态数值地震模拟器来探索断层粗糙度,摩擦和结构复杂性对地震产生的变形的影响。我的实验表明,断层粗糙度在确定断层间跳跃跳跃概率中起着至关重要的作用。这些结果证实了平滑断层的可接受的3-5 km破裂跳跃距离。但是,我的仿真表明,由于弹性应变能不均一,对于粗糙断层,破裂跳跃阈值距离变化很大。此外,断层粗糙度控制滑移率的时空变化,以使粗糙断层相对于其光滑的断层表现出较低的滑移率。这些结果的中心含义在于指导解释古地震推导的滑动率,该滑动率用于形成地震预报。我的研究的最后一部分评估了我为小学程度学习障碍学生设计的一组以地球科学为主题的课程计划。我的研究结果表明,对于那些学习障碍的学生,最有效的方法是结合概念传递技术,并且应该结合交互式幻灯片演示,触觉操纵,老师协助的概念草图以及学生主导的教学,以帮助学习障碍的学生掌握地球科学概念。

著录项

  • 作者

    Haddad, David Elias.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Geology.;Geomorphology.;Education Sciences.;Geophysics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 420 p.
  • 总页数 420
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号