首页> 外文学位 >From mesenchymal stem cell therapy to discovery of drug therapy for systemic sclerosis.
【24h】

From mesenchymal stem cell therapy to discovery of drug therapy for systemic sclerosis.

机译:从间充质干细胞疗法到系统性硬化症药物疗法的发现。

获取原文
获取原文并翻译 | 示例

摘要

Bone marrow mesenchymal stem cells (BMMSCs) are non-hematopoietic multipotent stem cells capable of differentiating into both mesenchymal and non-mesenchymal cell types. In addition to generate bone structure to replace damaged and diseased tissues, preclinical and clinical studies have shown that BMMSCs display profound immunomodulatory functions via inhibiting the proliferation and function of several major immune cells such as T lymphocytes, B lymphocytes, natural killer (NK), and dendritic cells. Thus, systemic infusion of BMMSCs has been used to treat a variety of diseases, including acute graft-versus-host-disease (GVHD), ameliorating HSC engraftment, systemic lupus erythematosus (SLE), intestinal and bowel disease (IBD), and sepsis. However, the detailed mechanism in which BMMSCs regulate immune function is not fully understood.;In the first part of Chapter 2 of this study, we show that systemic infusion of BMMSCs induces a transient T cell apoptosis via the Fas Ligand (FasL)-mediated Fas pathway and ameliorates diseased phenotypes in fibrillin-1 mutated systemic sclerosis (SSc) and dextran sulfate sodium-induced experimental colitis mice. The therapeutic mechanism of BMMSC infusion is associated with phagocytosis of apoptotic T cell debris, leading to a high level of macrophage-mediated transforming growth factor beta (TGF-beta) production and a subsequent immune tolerance. Importantly, we provided clinical evidence to show that MSC infusion in SS patients resulted in a T cell apoptosis and up-regulation of Tregs. Additionally, we revealed that Fas null BMMSCs, with normal FasL function, failed to induce T cell apoptosis and offer therapeutic effect for SS and colitis mice. Mechanistic study showed that Fas governed monocyte chemotactic protein 1 (MCP-1) secretion in BMMSCs, which plays a crucial role in the recruitment of T cells to BMMSCs for FasL-mediated apoptosis. In summary, BMMSCs use Fas to control MCP-1 secretion for the recruitment of T cells and subsequently use FasL to induce activated T cell apoptosis. Macrophages take debris of apoptotic T cells to release a high level of TGF-b, leading to up-regulation of Tregs and, ultimately, immune tolerance for immunotherapies.;In second part of Chapter 2 of this study, we showed for the first time that telomerase activity is required for maintaining the immunomodulatory properties of MSCs. Telomerase deficient MSCs lose their capacity to inhibit T-cells, activate Foxp3-positive regulatory T cells (Tregs), and ameliorate disease phenotype in systemic sclerosis mice, which can be rescued by overexpression of telomerase reverse tran¬scriptase (TERT). Mechanistically, TERT combined with beta-catenin and BRG1 to form a complex to bind to FAS Ligand (FASL) promoter and upregulate FASL expression. Upregulated FASL expression can elevate MSC immunomodulation function, as shown in our recent publication (Akiyama et al., 2012). When MSCs were treated with aspirin, their immunomodulation was significantly improved due to elevated telomerase activity and the number of MSCs required to treat systemic sclerosis mice was markedly reduced.;This study has uncovered the role of telomerase in MSC-based immunotherapies and the mechanism by which TERT binds to the promoter region to upregulate FASL expression. In fact, this is the first study to link telomerase activity to immunomodulatory therapies. Overall, therefore, this study has brought forth experimental evidence for stem cell biology, the molecular mechanism(s) underlying MSC-associated immunotherapies, and pathway-guided drug therapy.;In Chapter 3, we reveal that Fbn1+/- SSc mice show osteopenia phenotype with decreased osteogenic differentiation and increased adipogenic differentiation of bone marrow MSCs by the activation of IL-4 receptor alpha (IL-4Ralpha)/mTOR signaling. We further determine that mTOR signaling blocks osteogenic differentiation via the P70S6K/RUNX2 pathway, while it elevates adipogenic differentiation via P70S6K/PPARgamma2 pathway. Since significantly elevated levels of IL4 and TGF-beta were observed in Fbn1+/- SSc mice, we reveal that upregulation of the IL-4Ralpha in Fbn1+/- MSCs is governed by TGFbeta/SMAD3/SP1 signaling via SP1 biding to the Il4ralpha promoter. Either knockdown of IL-4Ralpha or inhibition of mTOR can rescue Fbn1+/- MSC function by increasing osteogenesis and reducing adipogenesis. Additionally, we showed that conditional knockout of mTOR in MSCs/osteoblasts could ameliorate osteopenia phenotype in Fbn1+/- mice by rescuing impaired osteogenic/adipogenic differentiation.;To translate our findings to potential clinical applications, we used rapamycin treatment to inhibit mTOR signaling, thereby rescuing osteopenia phenotype in Fbn1+/- SSc mice by rescuing osteo/adipo-lineage differentiation in MSCs. This result strongly suggests that rapamycin treatment may provide an anabolic therapy for systemic sclerosis.;In summary, this study establishes the FBN1/TGFbeta/SP1/IL-4Ralpha/mTOR cascade as a key determinant of MSC lineage selection, a finding which may serve as a basis for the development of novel therapies to treat SSc. (Abstract shortened by UMI.).
机译:骨髓间充质干细胞(BMMSC)是非造血性多能干细胞,能够分化为间充质和非间充质细胞类型。临床前和临床研究表明,BMMSC除了可以产生骨骼结构来替换受损和患病的组织外,还可以通过抑制几种主要免疫细胞(例如T淋巴细胞,B淋巴细胞,自然杀伤细胞(NK))的增殖和功能来发挥强大的免疫调节功能。和树突状细胞。因此,BMMSCs的全身性输注已被用于治疗多种疾病,包括急性移植物抗宿主病(GVHD),改善HSC植入,系统性红斑狼疮(SLE),肠和肠疾病(IBD)以及败血症。 。然而,关于BMMSC调节免疫功能的详细机制尚不完全清楚。在本研究的第2章的第一部分中,我们表明,全身输注BMMSC通过Fas配体(FasL)介导诱导瞬时T细胞凋亡。 Fas通路可改善原纤维蛋白1突变的全身性硬化症(SSc)和硫酸葡聚糖硫酸钠诱导的实验性结肠炎小鼠的患病表型。 BMMSC输注的治疗机制与凋亡性T细胞碎片的吞噬作用有关,导致高水平的巨噬细胞介导的转化生长因子β(TGF-β)产生和随后的免疫耐受。重要的是,我们提供的临床证据表明,在SS患者中注入MSC会导致T细胞凋亡和Tregs上调。此外,我们发现具有FasL正常功能的Fas无效BMMSCs不能诱导T细胞凋亡并不能为SS和结肠炎小鼠提供治疗效果。机理研究表明,Fas调控BMMSC中单核细胞趋化蛋白1(MCP-1)的分泌,这在T细胞向BMMSC募集FasL介导的细胞凋亡中起着至关重要的作用。总之,BMMSC使用Fas来控制MCP-1分泌以募集T细胞,随后使用FasL来诱导活化的T细胞凋亡。巨噬细胞吸收凋亡性T细胞碎片以释放高水平的TGF-b,从而导致Tregs上调,并最终导致对免疫疗法的免疫耐受。在本研究的第2章第二部分,我们首次进行了研究。端粒酶活性是维持MSCs免疫调节特性所必需的。端粒酶缺乏的MSC失去了抑制T细胞,激活Foxp3阳性调节性T细胞(Treg)的能力,并改善了系统性硬化小鼠的疾病表型,可以通过端粒酶逆转录酶(TERT)的过表达来挽救。从机理上讲,TERT与β-catenin和BRG1结合形成复合物以结合FAS配体(FASL)启动子并上调FASL表达。如我们最近的出版物(Akiyama等人,2012)所示,FASL表达上调可以提高MSC的免疫调节功能。当使用阿司匹林治疗间充质干细胞时,由于端粒酶活性的提高,其免疫调节作用得到了显着改善,并且治疗系统性硬化小鼠所需的间充质干细胞的数量也明显减少了。这项研究揭示了端粒酶在基于MSC的免疫治疗中的作用及其机制TERT与启动子区域结合以上调FASL表达。实际上,这是将端粒酶活性与免疫调节疗法联系起来的第一项研究。因此,总的来说,这项研究为干细胞生物学,MSC相关免疫疗法的基本分子机制以及途径指导的药物疗法提供了实验证据。在第3章中,我们揭示了Fbn1 +/- SSc小鼠显示出骨质减少通过激活IL-4受体α(IL-4Ralpha)/ mTOR信号传导减少骨髓MSC的成骨分化和增加成脂分化的表型。我们进一步确定,mTOR信号传导通过P70S6K / RUNX2途径阻止成骨分化,同时它通过P70S6K / PPARgamma2途径提高成脂分化。由于在Fbn1 +/- SSc小鼠中观察到IL4和TGF-β的水平显着升高,因此我们揭示Fbn1 +/- MSCs中IL-4Ralpha的上调受TGFbeta / SMAD3 / SP1信号通过SP1传递给Il4ralpha启动子的调控。 IL-4Ralpha的降低或mTOR的抑制均可通过增加成骨作用和减少脂肪形成来拯救Fbn1 +/- MSC功能。此外,我们还表明,有条件地敲除MSCs /成骨细胞中的mTOR可以通过挽救受损的成骨/成脂分化来改善Fbn1 +/-小鼠的骨质减少表型。为了将我们的发现转化为潜在的临床应用,我们使用雷帕霉素治疗抑制mTOR信号传导,从而通过拯救MSCs中的骨/ adipo-lineage分化来拯救Fbn1 +/- SSc小鼠的骨质减少表型。该结果强烈表明雷帕霉素治疗可能为系统性硬化症提供合成代谢治疗。,这项研究建立了FBN1 / TGFbeta / SP1 / IL-4Ralpha / mTOR级联作为MSC谱系选择的关键决定因素,这一发现可能为开发治疗SSc的新疗法奠定基础。 (摘要由UMI缩短。)。

著录项

  • 作者

    Chen, Chider.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Cell.;Health Sciences Immunology.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号